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Abstract 

Existing syntactic ordered tree mining methods 
for extracting characteristic contents from text sets 
have two problems: 1) subtrees which are 
semantically the same but are different ordered 
trees fail to be considered equivalent, and 2) raw 
extracted subtrees can be difficult to understand. In 
order to avoid these problems, we have developed 
a method of transforming all ordered trees so that 
the ordered trees having the same meaning are 
considered equivalent. We have also developed a 
method of constructing Japanese texts from 
extracted subtrees, and evaluated the effectiveness 
of our methods as applied to syntactic tree mining. 

1 Introduction 

Text mining technology is widely used as a 
framework for discovering knowledge from such 
large text data bases as questionnaire and contact- 
center data bases. 

Text mining methods employing the syntactic 
structures of texts have recently been proposed. 
Some of them restrict parse trees to ordered trees 
in order to enumerate efficiently all subtrees. For 
example, Kudo et al. have  proposed an 
enumerating algorithm which restricts parse trees 
to ordered trees (Kudo et al., 2004) in order to 
enumerate efficiently all subtrees through the use 
of a rightmost expansion (Asai et al., 2002). With 
respect to practical use, however, these text mining 
methods present the following two problems. (1) 
Under the above restriction, subtrees which are 
different ordered trees cannot be counted together, 
even when they in fact have the same meaning. 
This is a serious drawback. (2) Further, the 
meaning of raw extracted subtrees can be difficult 
to understand. 

In this paper, we use a Japanese text mining 
method which handles dependency trees and lists 
subtrees through the use of a rightmost expansion 
(Asai et al., 2002). We hereafter call this text 
mining method "tree mining". A dependency tree 
is a tree whose nodes represent phrases and whose 

edges represent dependencies between phrases. For 
each node label, we use the base form of a 
representative word in the phrase corresponding to 
the node. In order to avoid the problems 
encountered in existing tree mining methods that 
use ordered trees, we first developed a method of 
transforming all trees so that the ordered trees 
having the same meaning would be the same. 
Further, we have developed a new method of 
constructing Japanese texts from extracted subtrees 
in order to obtain mining results that are easy to 
understand. 

This paper is organized as follows. In Section 2, 
we explain in detail problems with existing tree 
mining systems that use ordered trees. In Section 3, 
we present our tree mining method. In Section 4, 
we describe the prototype tree mining system that 
we have developed. In Section 5, we report 
evaluation results for the prototype system. In 
Section 6, we conclude with a summary and a 
description of planned future work. 

2 Problems with Tree Mining Methods that 
Use Ordered Trees 

Existing tree mining methods which use ordered 
trees suffer from following two drawbacks. 

2.1 Trees Which Should Be Counted Together 
Cannot Be If They Are Different Ordered 
Trees 

The three trees shown in Figure 1 below 
illustrate the problem, which here may be 
considered specific to Japanese (i.e., the same 
problem would not necessarily occur in the 
treatment of other languages). Here, for the 
purposes of text mining, the phenomenon of 
expensive cars being bought by young people 
represents a single “meaning,” and while each of 
the trees expresses that meaning, their orderings 
are all different. Specifically,   (a) “Jakunensoh-
Ga Kohkyuhsha-Wo Kohnyu.” refers to young 
people’s buying of expensive cars, (b) 
“Kohkyuhsha-Wo Jakunensoh-Ga Kohnyuh” 
refers to the same thing, but the respective 
locations of the subject and object in the Japanese 
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sentence have been reversed, and (c) “Jakunensoh-
Ga Kohnyuh-Suru Kohkyuhsha” refers to 
expensive cars bought by young people. As may be 
seen in the figure, in dependency trees, differences 
in the order of dependency are represented by 
differences in the ordering of sister nodes, while 
differences in the direction of dependency are 
represented by differences in edge directions.  

2.2 Difficulty of Understanding the Meaning 
of Raw Extracted Trees 

With mining systems that output characteristic 
subtrees, it is often difficult for users to understand 
the meaning of the subtrees, particularly when the 
subtrees have a large number of nodes. 

3 Methods 

In order to overcome the above drawbacks, we 
incorporate the following two methods into tree 
mining: (1) structural transformation, and (2) 
sentence construction from extracted characteristic 
subtrees. 

3.1 Structural Transformation of Dependency 
Trees 

After parsing, we conduct the following two 
structural transformations: (1) sister node 
reordering, and (2) root expansion. 

3.1.1 Re-ordering of Sister Nodes 

Here, we unify the ordering of sister nodes by re-
ordering them all on the basis of a single rule; in 
this case, we put sister labels in alphabetical order. 
As may be seen in Figure 2, this results in the order 
of Figure 1’s (a) and (b) becoming the same. In 
this way, we are able to normalize ordered trees 
with regard to the order of these sister nodes. 

If the dependency tree contains sister nodes with 
the same label, we construct trees for all 
permutations of the sister nodes. 

Note that dependency trees which have different 
meanings can become the same tree through this 
reordering. We evaluate the validity of this 
reordering in Section 5.1. 

3.1.2 Root Expansion 
Here, we construct a separate dependency tree 

for each node in the original tree, with that node 
forming the new tree’s root. Such a “root 
expansion” is illustrated in Figure 3. This 
eliminates the problem created by differences in 
edge direction. We can enumerate all patterns of 
dependency directions thorough root expansion. 
We use root expansion because the direction of 
dependency cannot easily be normalized. Figure 4 
shows an example of failed dependency direction 
normalization that was based on alphabetical order. 
In this example, using alphabetical order, we adopt 
node A as a root node of Tree 1, and we adopt node 
B as a root node of Tree 2. While, before 

Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh 

Kohkyuhsha 

Kohnyuh 

Jakunensoh-Ga Kohnyuh-Suru Kohkyuhsha 

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh Kohkyuhsha-Wo Jakunensoh-Ga Kohnyuh 

(a) (b) 

(c) 

 
Figure 1: Examples of differently ordered trees which have the same meaning. 

Sister node sorting 

Sister node sorting 

Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh 
Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh 

Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh Kohkyuhsha-Wo Jakunensoh-Ga Kohnyuh 
Jakunensoh Kohkyuhsha 

Kohnyuh 

(a) 

(b) 

 
Figure 2: Examples of sister node sorting.
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dependency direction normalization, Tree 1 
contained Tree 2 as a subtree, after the 
normalization, Tree 1’ did not contain Tree 2’. 

Suppose N is the average number of nodes in 
dependency trees. Tree mining with root expansion 
will then be about N times slower than tree mining 
which restricts its dependency trees to ordered 
trees.  It will still, however, be faster than tree 
mining which does not restrict its parse trees. 

Dependency trees which have different 
meanings can become the same tree by means of 
this root expansion. We evaluate the validity of 
this root expansion in Section 5.1. 

3.2 Sentence Construction from Extracted 
Characteristic Subtrees 

After conducting the above structural 
transformations, we extract all characteristic 
subtrees and then generate candidate sentences for 

each characteristic subtree by arranging the 
original phrases (represented as subtree nodes) in 
the order found in the original text. Next, we 
calculate a score for each candidate sentence on the 
basis of a phrase bigram model, and the candidate 
with the highest score is selected for output as the 
sentence corresponding to the characteristic 
subtree in question. 

Root expansion 

Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh 

Kohnyuh 

Kohkyuhsha Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh 

Kohkyuhsha 

Kohnyuh 

Jakunensoh 

Root expansion 
Jakunensoh 

Kohkyuhsha 

Kohnyuh 

Jakunensoh-Ga Kohnyuh-Suru Kohkyuhsha 

Jakunensoh Kohkyuhsha 

Kohnyuh 

Jakunensoh 

Kohnyuh 

Kohkyuhsha 

Kohkyuhsha 

Kohnyuh 

Jakunensoh 

(a) 

(c) 

 
Figure 3: Examples of root expansion. 

Specifically, an output sentence S is selected 
from sentence candidates {W | w1…wn} as follows: 

),|(maxarg)(maxarg 1−≈= ii
WW

wwPWPS   

where w1,…,wn are phrases in sentence candidate 
W, P(W) is the probability that W will occur, 
P(wi|wi-1) is the bigram probability that phrase wi 
will succeed phrase wi-1. 

Bigram probabilities are estimated from a large 
corpus and/or the input text sets of the tree mining 
system. 

4 Prototype System 

Our newly developed prototype system executes 
tree mining in the following steps: 

1) Parsing: It constructs dependency trees by 
parsing input text sets. 

2) Structural Transformation of Dependency 
Trees: It applies the structural transformation 
introduced in Section 3.1 to the dependency trees 
constructed in the parsing.  

3) Extraction of Characteristic Subtrees: It 
uses a rightmost expansion (Asai et al., 2002) to 
list up all subtrees in each dependency tree, and 
then calculates a score for each subtree on the basis 
of information gain (Morinaga et al. 2005). One or 
more subtrees are then selected as characteristic 

 

Dependency direction 

normalization B D 

C

A 

B D 

C

A 
Tree 1 

Dependency direction 

normalization 

B D 

C B 

D 

C

Tree 2 

Tree 1’ 

Tree 2’ 

 
Figure 4: Example of failed dependency direction 

normalization. 
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subtrees. The selection may be based on ranking 
(e.g., best 3 scores, etc.) or on a pre-determined 
threshold value (e.g., scores exceeding 0.5, etc.). 

4) Deleting Unneeded Characteristic 
Subtrees:  

In order to avoid the output of characteristic 
subtrees whose meanings are essentially the same, 
the prototype deletes all but one of any subtrees 
which would be the same if they were considered 
as free trees rather than as ordered trees; it leaves 
only the subtree with the highest score. Further, it 
also deletes any subtrees that are actually already 
contained within other subtrees. 

5) Sentence Construction from Extracted 
Characteristic Subtrees: 

Finally, the prototype uses the method described 
in Section 3.2 to construct, from extracted subtrees, 
sentences to be output. 

5 Evaluation 

In our evaluation of the prototype system, we 
applied it to the following two corpuses. 

Corpus 1: A business report data base 
containing 19,399 texts. Average text size is 60.4 
characters (characters include both ideographs 
(kanji) and syllable-characters (kana)). 

Corpus 2: A corporate contact-center data base 
containing 1,197 texts. Average text size is 44.1 
characters. 

We show two examples of actual extractions in 
Figures 5 and 6. 

In the example shown in Figure 5, the prototype 
is able to recognize subtrees which have the same 

meaning despite having differently ordered 
dependencies e.g., “Tantohsha-Ni Kaiyaku-
Tetsudzuki-Wo Irai-Shita-Ga” and “Kaiyaku-No 
Tetsudzuki-Wo Tantohsha-Ni Irai-Shite”. Such 
subtrees are unified by reordering their sister nodes. 
The two subtrees here would be unified into 
“Kaiyaku-No Tetsudzuki-Wo Tantohsha-Ni Irai-
Shita-Tokoro”. 

In the extraction example shown in the Figure 6, 
the prototype is able to recognize subtrees which 
have the same meaning despite having different 
direction dependencies, e.g., “Kanji-No Warui 
Taioh” and “Taioh-Ga Kanji-Ga Warui”. Such 
subtrees are unified by root expansion. The two 
subtrees here would be unified into “Taioh-Ga 
Kanji-Ga Warui”. 

We evaluated (1) the efficiency of extraction and 
(2) the efficiency of sentence construction, and the 
evaluation itself was based on a total of 900 
characteristic subtrees extracted from Corpus 1 and 
386 characteristic subtrees extracted from Corpus 2 
that the prototype identified as having two or more 
nodes. 

5.1 The Efficiency of Characteristic Subtree 
Extraction Based on the Use of Structural 
Transformations of Dependency Trees 

Here, our relevant measures are the “precise 
extraction ratio,” which represents the accuracy of 
subtree unification, and the “extraction coverage 
ratio,” which represents the degree to which texts 
that should have yielded extraction results actually 
did yield them. 

If we consider (1) C to represent those texts from 

 

......Tantohsha-Ni Kaiyaku Tetsudzuki-Wo Irai-Shita-Ga Sugu Shite-Kurezu 
(I asked the person in charge to proceed with cancellation, but he didn’t do it immediately.) 

Ikkagetsu-Hodo Mae-Ni Tantohsha-He Kaiyaku-Tetsudzuki-Wo Irai-Shiteiru-Ga 
(I asked the person in charge to proceed with cancellation one month ago.) 

……… 

Kaiyaku Tetsudzuki-Wo Tantohsha-Ni Irai-Shite Ikkagetsu-Mo Tatsuno-Ni… 
(A whole month has passed since I asked the person in charge to proceed with cancellation) 

Irai 

Tetsudzuki Tantohsha 

Kaiyaku 

Kaiyaku-No Tetsudzuki-Wo Tantohsha-Ni Irai-Shitatokoro 
(I asked the person in charge to proceed with cancellation) 

(2) extracted characteristic structure 

(3) output sentence 

(1) input text sets 

Figure 5: Extraction example 1. 
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which prototype unification and extraction resulted 
in characteristic subtrees having two or more nodes, 
(2) B to represent the texts from which human 
judgement would result in the identification of the 
same subtrees, and (3) A to represent the overlap of 
B and C, then the “precise extraction ratio” is A/C, 
and the “extraction coverage ratio” is A/B. Figure 7 
shows the relationships among A, B, and C. 

In order to identify the texts represented by the 
above B, we first conducted a search of all texts on 
the basis of sentences constructed by the prototype. 
The results of this search were then searched 
manually to determine which texts actually 
contained phrases expressing the same meanings as 
those expressed by the multi-node characteristic 

subtrees extracted by the prototype. 
Table 1 lists both the precise extraction ratio and 

the extraction coverage ratio for each of the two 
corpuses. 

 
corpus precise 

extraction ratio 
extraction 

coverage ratio
1 91.4% 82.5% 
2 90.5% 84.4% 

Table 1: Precise extraction ratio and extraction 
coverage ratio 

As may be seen in the table, more than 90% of 
the texts identified by the prototype as containing 

…Gengaku-No Shohkai-Wo-Shitara Kanji-no Warui Taioh-Wo Sareta… 
(I inquired about a reduction, then the response was unpleasant.) 

…Denwa-Wo Ireta-Ga Taioh-Ga Kanji-Ga Warui 
(I called, but the response was unpleasant.) 

……… 

…Totemo Taioh, Kanji-Ga Warui. 
(The response was very unpleasant.) 

Irai 

Taioh 

Taioh-Ga Kanji-Ga Warui 
(An response was unpleasant.) 

Kanji 

(1) input text sets 

(2) extracted characteristic structure 

(3) output sentence 

Figure 6: Extraction example 2. 

B A C 

A: Overlap of B and C. 
B: The texts from which human judgement would result in the identification of the same subtrees. 
C: The texts from which prototype unification and extraction resulted in characteristic subtrees having two or more nodes. 

 
Figure 7: A, B, C in Section 5.1. 
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multi-node characteristic subtrees were also 
identified by human judgement as containing them. 
Further, more than 80% of those human-identified 
texts were also correctly identified by the 
prototype. This indicates a degree of accuracy and 
coverage sufficient for practical use. In addition, 
the reordering and the root expansion achieved a 
high level of reliability. 

In texts which actually contained the meaning of 
a characteristic subtree but from which that 
characteristic subtree was not extracted, we found 
that most of those texts contained expressions 
which our structural transformation was unable to 
handle (For example, “Pasuwahdo-Ga 
Wakarimasen” (I don’t know my password.) and 
“Pasuwahdo-Wo Henkoh-shite Wakaranaku-
Natte-Shimaimashita” (I don’t remember what I 
changed my password to.) were not identified as 
indicating the same basic problem). 

5.2 The Efficiency of Sentence Construction 
from Characteristic Subtrees 

In order to evaluate the efficiency of sentence 
construction from characteristic subtrees, we used 
an “extraction result comprehensibility ratio,” 
which represents the ratio of the number of 
sentences whose meanings are comprehensible to 
the total number of sentences constructed from 
multi-node characteristic subtrees. 

Further, because not all comprehensible 
sentences contain enough information to be 
meaningful for text mining purposes, we also 
employed a “meaningful extraction result ratio,” 
which is the ratio of the number of sentences 
containing enough information to be meaningful to 
the total number of sentences constructed from 
multi-node subtrees. 

Table 2 shows the above two ratios for each of 
the two corpuses. 

 
corpus extraction result 

comprehensibility ratio 
meaningful 

extraction ratio

1 97.9% 87.8% 
2 95.3% 83.9% 

Table 2: Extraction result comprehensible ratio 
and meaningful extraction ratio 

As may be seen in the table, more than 95% of 
the constructed sentences were comprehensible, 
and, on average, only about 10% of the 
comprehensible sentences failed to contain enough 
information to be meaningful for mining. These 
results also indicate the potential for practical 
applications. 

Here, we should also note that most sentences 
judged to be incomprehensible had been 
constructed from wrongly parsed dependency trees. 

With respect to comprehensible sentences which 
did not contain enough meaningful information, 
we were able to identify the following two 
significant tendencies: 

Partial deletion of compound nouns: The 
partial deletion of one or more elements of a 
compound noun (e.g., the reduction of “WEB Mail-
Nite Mail-Wo Okuroh-To-Suru-To” (When I tried 
to send an e-mail message by WEB mail, …) to 
“Mail-Nite Mail-Wo Okuroh-To-Suru-To” (When 
I tried to send an e-mail message by e-mail, …)) 
would be sufficient to render a sentence non-
meaningful for the purposes of text mining.  

Deletion of crucial element preceding 
declinable word: In some cases the deletion of an 
element preceding a declinable word (in Japanese, 
verbs and adjectival forms) can be enough to 
render a sentence non-meaningful for the purposes 
of text mining (e.g., the reduction of “Dansa-Ga 
Ari Kiken-Da” (There is danger due to a level-
difference.) to “Ari Kiken-Da” (There is danger 
due to.)). 

6 Conclusion and Future Work 

In this paper, we have described a tree mining 
method for the efficient handling of differently 
ordered trees having the same meaning and for the 
outputting of easily understandable extraction 
results. With this method, different ordered trees 
which have the same meaning are transformed into 
a single unified ordered tree, and highly 
understandable results are produced by means of a 
newly developed technique for the construction of 
Japanese-language sentences from extracted 
characteristic subtrees. The application of a system 
prototype to a business report corpus and a contact-
center corpus has demonstrated a precise extraction 
ratio of greater than 90% and an extraction 
coverage ratio of greater than 80%. This 
demonstrates the high reliability of both the 
reordering and the root expansion, and it indicates 
the potential for practical applications.  Further, 
about 95% of the extracted sentences were 
comprehensible and about 85% contained enough 
information to be meaningful for the purposes of 
text mining. 

In order to increase the extraction coverage ratio, 
we intend to introduce a structural replacement 
method capable of handling differences in tree 
ordering which cannot be handled by structural 
transformation. In order to reduce the amount of 
non-meaningful output, we intend to improve our 
method of handling both compound nouns and 
elements which precede declinable words and are 
crucial to meaningfulness. 
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