
Japanese language analysis for syntactic tree mining to extract characteristic
contents

Yohsuke Sakao, Takahiro Ikeda, Kenji Satoh and Susumu Akamine
Media and Information Research Laboratories, NEC Corporation

1753, Shimonumabe, Nakahara-ku
Kawasaki, Kanagawa, Japan , 211-8666

{y-sakao@bu, t-ikeda@di, k-satoh@da, s-akamine@ak}.jp.nec.com

Abstract

Existing syntactic ordered tree mining methods
for extracting characteristic contents from text sets
have two problems: 1) subtrees which are
semantically the same but are different ordered
trees fail to be considered equivalent, and 2) raw
extracted subtrees can be difficult to understand. In
order to avoid these problems, we have developed
a method of transforming all ordered trees so that
the ordered trees having the same meaning are
considered equivalent. We have also developed a
method of constructing Japanese texts from
extracted subtrees, and evaluated the effectiveness
of our methods as applied to syntactic tree mining.

1 Introduction

Text mining technology is widely used as a
framework for discovering knowledge from such
large text data bases as questionnaire and contact-
center data bases.

Text mining methods employing the syntactic
structures of texts have recently been proposed.
Some of them restrict parse trees to ordered trees
in order to enumerate efficiently all subtrees. For
example, Kudo et al. have proposed an
enumerating algorithm which restricts parse trees
to ordered trees (Kudo et al., 2004) in order to
enumerate efficiently all subtrees through the use
of a rightmost expansion (Asai et al., 2002). With
respect to practical use, however, these text mining
methods present the following two problems. (1)
Under the above restriction, subtrees which are
different ordered trees cannot be counted together,
even when they in fact have the same meaning.
This is a serious drawback. (2) Further, the
meaning of raw extracted subtrees can be difficult
to understand.

In this paper, we use a Japanese text mining
method which handles dependency trees and lists
subtrees through the use of a rightmost expansion
(Asai et al., 2002). We hereafter call this text
mining method "tree mining". A dependency tree
is a tree whose nodes represent phrases and whose

edges represent dependencies between phrases. For
each node label, we use the base form of a
representative word in the phrase corresponding to
the node. In order to avoid the problems
encountered in existing tree mining methods that
use ordered trees, we first developed a method of
transforming all trees so that the ordered trees
having the same meaning would be the same.
Further, we have developed a new method of
constructing Japanese texts from extracted subtrees
in order to obtain mining results that are easy to
understand.

This paper is organized as follows. In Section 2,
we explain in detail problems with existing tree
mining systems that use ordered trees. In Section 3,
we present our tree mining method. In Section 4,
we describe the prototype tree mining system that
we have developed. In Section 5, we report
evaluation results for the prototype system. In
Section 6, we conclude with a summary and a
description of planned future work.

2 Problems with Tree Mining Methods that
Use Ordered Trees

Existing tree mining methods which use ordered
trees suffer from following two drawbacks.

2.1 Trees Which Should Be Counted Together
Cannot Be If They Are Different Ordered
Trees

The three trees shown in Figure 1 below
illustrate the problem, which here may be
considered specific to Japanese (i.e., the same
problem would not necessarily occur in the
treatment of other languages). Here, for the
purposes of text mining, the phenomenon of
expensive cars being bought by young people
represents a single “meaning,” and while each of
the trees expresses that meaning, their orderings
are all different. Specifically, (a) “Jakunensoh-
Ga Kohkyuhsha-Wo Kohnyu.” refers to young
people’s buying of expensive cars, (b)
“Kohkyuhsha-Wo Jakunensoh-Ga Kohnyuh”
refers to the same thing, but the respective
locations of the subject and object in the Japanese

kong
339

sentence have been reversed, and (c) “Jakunensoh-
Ga Kohnyuh-Suru Kohkyuhsha” refers to
expensive cars bought by young people. As may be
seen in the figure, in dependency trees, differences
in the order of dependency are represented by
differences in the ordering of sister nodes, while
differences in the direction of dependency are
represented by differences in edge directions.

2.2 Difficulty of Understanding the Meaning
of Raw Extracted Trees

With mining systems that output characteristic
subtrees, it is often difficult for users to understand
the meaning of the subtrees, particularly when the
subtrees have a large number of nodes.

3 Methods

In order to overcome the above drawbacks, we
incorporate the following two methods into tree
mining: (1) structural transformation, and (2)
sentence construction from extracted characteristic
subtrees.

3.1 Structural Transformation of Dependency
Trees

After parsing, we conduct the following two
structural transformations: (1) sister node
reordering, and (2) root expansion.

3.1.1 Re-ordering of Sister Nodes

Here, we unify the ordering of sister nodes by re-
ordering them all on the basis of a single rule; in
this case, we put sister labels in alphabetical order.
As may be seen in Figure 2, this results in the order
of Figure 1’s (a) and (b) becoming the same. In
this way, we are able to normalize ordered trees
with regard to the order of these sister nodes.

If the dependency tree contains sister nodes with
the same label, we construct trees for all
permutations of the sister nodes.

Note that dependency trees which have different
meanings can become the same tree through this
reordering. We evaluate the validity of this
reordering in Section 5.1.

3.1.2 Root Expansion
Here, we construct a separate dependency tree

for each node in the original tree, with that node
forming the new tree’s root. Such a “root
expansion” is illustrated in Figure 3. This
eliminates the problem created by differences in
edge direction. We can enumerate all patterns of
dependency directions thorough root expansion.
We use root expansion because the direction of
dependency cannot easily be normalized. Figure 4
shows an example of failed dependency direction
normalization that was based on alphabetical order.
In this example, using alphabetical order, we adopt
node A as a root node of Tree 1, and we adopt node
B as a root node of Tree 2. While, before

Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh

Kohkyuhsha

Kohnyuh

Jakunensoh-Ga Kohnyuh-Suru Kohkyuhsha

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh Kohkyuhsha-Wo Jakunensoh-Ga Kohnyuh

(a) (b)

(c)

Figure 1: Examples of differently ordered trees which have the same meaning.

Sister node sorting

Sister node sorting

Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh
Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh

Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh Kohkyuhsha-Wo Jakunensoh-Ga Kohnyuh
Jakunensoh Kohkyuhsha

Kohnyuh

(a)

(b)

Figure 2: Examples of sister node sorting.

kong
340

dependency direction normalization, Tree 1
contained Tree 2 as a subtree, after the
normalization, Tree 1’ did not contain Tree 2’.

Suppose N is the average number of nodes in
dependency trees. Tree mining with root expansion
will then be about N times slower than tree mining
which restricts its dependency trees to ordered
trees. It will still, however, be faster than tree
mining which does not restrict its parse trees.

Dependency trees which have different
meanings can become the same tree by means of
this root expansion. We evaluate the validity of
this root expansion in Section 5.1.

3.2 Sentence Construction from Extracted
Characteristic Subtrees

After conducting the above structural
transformations, we extract all characteristic
subtrees and then generate candidate sentences for

each characteristic subtree by arranging the
original phrases (represented as subtree nodes) in
the order found in the original text. Next, we
calculate a score for each candidate sentence on the
basis of a phrase bigram model, and the candidate
with the highest score is selected for output as the
sentence corresponding to the characteristic
subtree in question.

Root expansion

Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh

Kohnyuh

Kohkyuhsha Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh-Ga Kohkyuhsha-Wo Kohnyuh

Kohkyuhsha

Kohnyuh

Jakunensoh

Root expansion
Jakunensoh

Kohkyuhsha

Kohnyuh

Jakunensoh-Ga Kohnyuh-Suru Kohkyuhsha

Jakunensoh Kohkyuhsha

Kohnyuh

Jakunensoh

Kohnyuh

Kohkyuhsha

Kohkyuhsha

Kohnyuh

Jakunensoh

(a)

(c)

Figure 3: Examples of root expansion.

Specifically, an output sentence S is selected
from sentence candidates {W | w1…wn} as follows:

),|(maxarg)(maxarg 1−≈= ii
WW

wwPWPS

where w1,…,wn are phrases in sentence candidate
W, P(W) is the probability that W will occur,
P(wi|wi-1) is the bigram probability that phrase wi
will succeed phrase wi-1.

Bigram probabilities are estimated from a large
corpus and/or the input text sets of the tree mining
system.

4 Prototype System

Our newly developed prototype system executes
tree mining in the following steps:

1) Parsing: It constructs dependency trees by
parsing input text sets.

2) Structural Transformation of Dependency
Trees: It applies the structural transformation
introduced in Section 3.1 to the dependency trees
constructed in the parsing.

3) Extraction of Characteristic Subtrees: It
uses a rightmost expansion (Asai et al., 2002) to
list up all subtrees in each dependency tree, and
then calculates a score for each subtree on the basis
of information gain (Morinaga et al. 2005). One or
more subtrees are then selected as characteristic

Dependency direction

normalization B D

C

A

B D

C

A
Tree 1

Dependency direction

normalization

B D

C B

D

C

Tree 2

Tree 1’

Tree 2’

Figure 4: Example of failed dependency direction

normalization.

kong
341

subtrees. The selection may be based on ranking
(e.g., best 3 scores, etc.) or on a pre-determined
threshold value (e.g., scores exceeding 0.5, etc.).

4) Deleting Unneeded Characteristic
Subtrees:

In order to avoid the output of characteristic
subtrees whose meanings are essentially the same,
the prototype deletes all but one of any subtrees
which would be the same if they were considered
as free trees rather than as ordered trees; it leaves
only the subtree with the highest score. Further, it
also deletes any subtrees that are actually already
contained within other subtrees.

5) Sentence Construction from Extracted
Characteristic Subtrees:

Finally, the prototype uses the method described
in Section 3.2 to construct, from extracted subtrees,
sentences to be output.

5 Evaluation

In our evaluation of the prototype system, we
applied it to the following two corpuses.

Corpus 1: A business report data base
containing 19,399 texts. Average text size is 60.4
characters (characters include both ideographs
(kanji) and syllable-characters (kana)).

Corpus 2: A corporate contact-center data base
containing 1,197 texts. Average text size is 44.1
characters.

We show two examples of actual extractions in
Figures 5 and 6.

In the example shown in Figure 5, the prototype
is able to recognize subtrees which have the same

meaning despite having differently ordered
dependencies e.g., “Tantohsha-Ni Kaiyaku-
Tetsudzuki-Wo Irai-Shita-Ga” and “Kaiyaku-No
Tetsudzuki-Wo Tantohsha-Ni Irai-Shite”. Such
subtrees are unified by reordering their sister nodes.
The two subtrees here would be unified into
“Kaiyaku-No Tetsudzuki-Wo Tantohsha-Ni Irai-
Shita-Tokoro”.

In the extraction example shown in the Figure 6,
the prototype is able to recognize subtrees which
have the same meaning despite having different
direction dependencies, e.g., “Kanji-No Warui
Taioh” and “Taioh-Ga Kanji-Ga Warui”. Such
subtrees are unified by root expansion. The two
subtrees here would be unified into “Taioh-Ga
Kanji-Ga Warui”.

We evaluated (1) the efficiency of extraction and
(2) the efficiency of sentence construction, and the
evaluation itself was based on a total of 900
characteristic subtrees extracted from Corpus 1 and
386 characteristic subtrees extracted from Corpus 2
that the prototype identified as having two or more
nodes.

5.1 The Efficiency of Characteristic Subtree
Extraction Based on the Use of Structural
Transformations of Dependency Trees

Here, our relevant measures are the “precise
extraction ratio,” which represents the accuracy of
subtree unification, and the “extraction coverage
ratio,” which represents the degree to which texts
that should have yielded extraction results actually
did yield them.

If we consider (1) C to represent those texts from

......Tantohsha-Ni Kaiyaku Tetsudzuki-Wo Irai-Shita-Ga Sugu Shite-Kurezu
(I asked the person in charge to proceed with cancellation, but he didn’t do it immediately.)

Ikkagetsu-Hodo Mae-Ni Tantohsha-He Kaiyaku-Tetsudzuki-Wo Irai-Shiteiru-Ga
(I asked the person in charge to proceed with cancellation one month ago.)

………

Kaiyaku Tetsudzuki-Wo Tantohsha-Ni Irai-Shite Ikkagetsu-Mo Tatsuno-Ni…
(A whole month has passed since I asked the person in charge to proceed with cancellation)

Irai

Tetsudzuki Tantohsha

Kaiyaku

Kaiyaku-No Tetsudzuki-Wo Tantohsha-Ni Irai-Shitatokoro
(I asked the person in charge to proceed with cancellation)

(2) extracted characteristic structure

(3) output sentence

(1) input text sets

Figure 5: Extraction example 1.

kong
342

which prototype unification and extraction resulted
in characteristic subtrees having two or more nodes,
(2) B to represent the texts from which human
judgement would result in the identification of the
same subtrees, and (3) A to represent the overlap of
B and C, then the “precise extraction ratio” is A/C,
and the “extraction coverage ratio” is A/B. Figure 7
shows the relationships among A, B, and C.

In order to identify the texts represented by the
above B, we first conducted a search of all texts on
the basis of sentences constructed by the prototype.
The results of this search were then searched
manually to determine which texts actually
contained phrases expressing the same meanings as
those expressed by the multi-node characteristic

subtrees extracted by the prototype.
Table 1 lists both the precise extraction ratio and

the extraction coverage ratio for each of the two
corpuses.

corpus precise

extraction ratio
extraction

coverage ratio
1 91.4% 82.5%
2 90.5% 84.4%

Table 1: Precise extraction ratio and extraction
coverage ratio

As may be seen in the table, more than 90% of
the texts identified by the prototype as containing

…Gengaku-No Shohkai-Wo-Shitara Kanji-no Warui Taioh-Wo Sareta…
(I inquired about a reduction, then the response was unpleasant.)

…Denwa-Wo Ireta-Ga Taioh-Ga Kanji-Ga Warui
(I called, but the response was unpleasant.)

………

…Totemo Taioh, Kanji-Ga Warui.
(The response was very unpleasant.)

Irai

Taioh

Taioh-Ga Kanji-Ga Warui
(An response was unpleasant.)

Kanji

(1) input text sets

(2) extracted characteristic structure

(3) output sentence

Figure 6: Extraction example 2.

B A C

A: Overlap of B and C.
B: The texts from which human judgement would result in the identification of the same subtrees.
C: The texts from which prototype unification and extraction resulted in characteristic subtrees having two or more nodes.

Figure 7: A, B, C in Section 5.1.

kong
343

multi-node characteristic subtrees were also
identified by human judgement as containing them.
Further, more than 80% of those human-identified
texts were also correctly identified by the
prototype. This indicates a degree of accuracy and
coverage sufficient for practical use. In addition,
the reordering and the root expansion achieved a
high level of reliability.

In texts which actually contained the meaning of
a characteristic subtree but from which that
characteristic subtree was not extracted, we found
that most of those texts contained expressions
which our structural transformation was unable to
handle (For example, “Pasuwahdo-Ga
Wakarimasen” (I don’t know my password.) and
“Pasuwahdo-Wo Henkoh-shite Wakaranaku-
Natte-Shimaimashita” (I don’t remember what I
changed my password to.) were not identified as
indicating the same basic problem).

5.2 The Efficiency of Sentence Construction
from Characteristic Subtrees

In order to evaluate the efficiency of sentence
construction from characteristic subtrees, we used
an “extraction result comprehensibility ratio,”
which represents the ratio of the number of
sentences whose meanings are comprehensible to
the total number of sentences constructed from
multi-node characteristic subtrees.

Further, because not all comprehensible
sentences contain enough information to be
meaningful for text mining purposes, we also
employed a “meaningful extraction result ratio,”
which is the ratio of the number of sentences
containing enough information to be meaningful to
the total number of sentences constructed from
multi-node subtrees.

Table 2 shows the above two ratios for each of
the two corpuses.

corpus extraction result

comprehensibility ratio
meaningful

extraction ratio

1 97.9% 87.8%
2 95.3% 83.9%

Table 2: Extraction result comprehensible ratio
and meaningful extraction ratio

As may be seen in the table, more than 95% of
the constructed sentences were comprehensible,
and, on average, only about 10% of the
comprehensible sentences failed to contain enough
information to be meaningful for mining. These
results also indicate the potential for practical
applications.

Here, we should also note that most sentences
judged to be incomprehensible had been
constructed from wrongly parsed dependency trees.

With respect to comprehensible sentences which
did not contain enough meaningful information,
we were able to identify the following two
significant tendencies:

Partial deletion of compound nouns: The
partial deletion of one or more elements of a
compound noun (e.g., the reduction of “WEB Mail-
Nite Mail-Wo Okuroh-To-Suru-To” (When I tried
to send an e-mail message by WEB mail, …) to
“Mail-Nite Mail-Wo Okuroh-To-Suru-To” (When
I tried to send an e-mail message by e-mail, …))
would be sufficient to render a sentence non-
meaningful for the purposes of text mining.

Deletion of crucial element preceding
declinable word: In some cases the deletion of an
element preceding a declinable word (in Japanese,
verbs and adjectival forms) can be enough to
render a sentence non-meaningful for the purposes
of text mining (e.g., the reduction of “Dansa-Ga
Ari Kiken-Da” (There is danger due to a level-
difference.) to “Ari Kiken-Da” (There is danger
due to.)).

6 Conclusion and Future Work

In this paper, we have described a tree mining
method for the efficient handling of differently
ordered trees having the same meaning and for the
outputting of easily understandable extraction
results. With this method, different ordered trees
which have the same meaning are transformed into
a single unified ordered tree, and highly
understandable results are produced by means of a
newly developed technique for the construction of
Japanese-language sentences from extracted
characteristic subtrees. The application of a system
prototype to a business report corpus and a contact-
center corpus has demonstrated a precise extraction
ratio of greater than 90% and an extraction
coverage ratio of greater than 80%. This
demonstrates the high reliability of both the
reordering and the root expansion, and it indicates
the potential for practical applications. Further,
about 95% of the extracted sentences were
comprehensible and about 85% contained enough
information to be meaningful for the purposes of
text mining.

In order to increase the extraction coverage ratio,
we intend to introduce a structural replacement
method capable of handling differences in tree
ordering which cannot be handled by structural
transformation. In order to reduce the amount of
non-meaningful output, we intend to improve our
method of handling both compound nouns and
elements which precede declinable words and are
crucial to meaningfulness.

kong
344

References

T. Asai, K. Abe, S. Kawasoe, H. Arimura, H.
Sakamoto and S. Arikawa. 2002. Efficient
substructure discovery from large semistructured
data. Proc. SDM’02, pages 158–174.

T. Kudo and Y. Matsumoto. 2004. A Boosting
Algorithm for Classification of Semi-Structured
Text. Proc. of EMNLP, pages 301-308.

S. Morinaga, H. Arimura, T. Ikeda, Y. Sakao and S.
Akamine, 2005, Key semantics extraction by
dependency tree mining. Proc. of KDDI2005 (to
appear).

kong
345

