
Feature Function
Overhaul

Michal Hrusecky, Tomas Caithaml, Chris Dyer

Accomplishments

• Feature functions are now handled in a
engineer-friendly way:

• Stateless feature functions implement
StatelessFeatureFunction

• Stateful feature functions implement
StatefulFeatureFunction

Stateful Features

• Return arbitrary state after computing
value

• Used to split DP states

• Passed as “previous” state to edges that
derive (immediately) from that node

• Example: Language model, Distortion

class StatefulFeatureFunction: public FeatureFunction {

public:

 virtual void Evaluate(
 const Hypothesis& cur_hypo,
 const FFState* prev_state,
 ScoreComponentCollection* scoreBreakdown,
 FFState** cur_state) = 0;

class FFState {
 public:
 virtual ~FFState();
 virtual int Compare(const FFState& other) const = 0;
};

State representation:

class StatefulFeatureFunction: public FeatureFunction {

public:

 virtual void Evaluate(
 const Hypothesis& cur_hypo,
 const FFState* prev_state,
 ScoreComponentCollection* scoreBreakdown,
 FFState** cur_state) = 0;

class FFState {
 public:
 virtual ~FFState();
 virtual int Compare(const FFState& other) const = 0;
};

State representation:

class StatefulFeatureFunction: public FeatureFunction {

public:

 virtual void Evaluate(
 const Hypothesis& cur_hypo,
 const FFState* prev_state,
 ScoreComponentCollection* scoreBreakdown,
 FFState** cur_state) = 0;

class FFState {
 public:
 virtual ~FFState();
 virtual int Compare(const FFState& other) const = 0;
};

State representation:

class StatefulFeatureFunction: public FeatureFunction {

public:

 virtual void Evaluate(
 const Hypothesis& cur_hypo,
 const FFState* prev_state,
 ScoreComponentCollection* scoreBreakdown,
 FFState** cur_state) = 0;

class FFState {
 public:
 virtual ~FFState();
 virtual int Compare(const FFState& other) const = 0;
};

State representation:

class StatefulFeatureFunction: public FeatureFunction {

public:

 virtual void Evaluate(
 const Hypothesis& cur_hypo,
 const FFState* prev_state,
 ScoreComponentCollection* scoreBreakdown,
 FFState** cur_state) = 0;

class FFState {
 public:
 virtual ~FFState();
 virtual int Compare(const FFState& other) const = 0;
};

State representation:

Stateless Features

• Compute the same value independent of
context

• Generation scores

• Translation scores

• Word penalty

class StatelessFeatureFunction: public FeatureFunction {

public:
 virtual void Evaluate(
 const TargetPhrase& cur_hypo,
 ScoreComponentCollection* out) = 0;

class StatelessFeatureFunction: public FeatureFunction {

public:
 virtual void Evaluate(
 const TargetPhrase& cur_hypo,
 ScoreComponentCollection* out) = 0;

Continuing work

• New feature functions!

• Removing dependencies on specific feature
types from n-best extraction, command line
interface, MERT support scripts

Děkujeme vám!

