

THE GREYC MACHINE TRANSLATION SYSTEM FOR THE IWSLT 2008 CAMPAIGN

Yves Lepage Adrien Lardilleux Julien Gosme Jean-Luc Manguin

GREYC, University of Caen, France

(GREYC@IWSLT 2008) 1 / 12

THE SYSTEM

- Evolution of the ALEPH machine translation system that participated in the IWSLT 2005 [Lepage & Denoual, 2005] and IWSLT 2007 [Lepage & Lardilleux, 2007] campaigns.
- ALEPH is a pure example-based system that exploits proportional analogies (analogies of form).

Previous system: analogies between character strings:

you swim : he swims :: you surf :: he surfs

NEW SYSTEM: can also work on words (used in IWSLT):

My hotel sucks : Your hotel sucks :: My hotel rocks :: Your hotel rocks

⇒ Nothing the character-based approach cannot deal with, but faster.

(GREYC@IWSLT 2008) 2 / 12

THE PARTICIPATION OF THE GREYC

Tracks: all btec tasks

- Arabic to English
- Chinese to English
- Chinese to Spanish
- Chinese to Spanish by the way of English (Pivot)

CONDITIONS: used only training data (no development set)

(GREYC@IWSLT 2008) 3 / 12

NON-DETERMINISTIC ANALOGY SOLVER.

PREVIOUS IMPLEMENTATION IN C:

$$x:y::z:$$
? \Rightarrow ? = t

NEW SOLVER IN PYTHON:

$$x:y::z:$$
? \Rightarrow ? $=$ t_1 t_2 t_3 \vdots

EXAMPLE

kalb : kulaib :: masjid : musaijid kalb : kulaib :: masjid : musjaiid kalb : kulaib :: masjid : musjiaid

Non-deterministic analogy solver

Distribution of the number of analogical equations with the same number of solutions (number of solutions in abscissae; number of analogies in ordinates):

Ratio 1 solution: multiple solutions = 30:1

(GREYC@IWSLT 2008) 5 / 12

RE-ENGINEERING OF THE ENGINE

Main issue of the engine

Efficient discovery of translation examples that are likely to form an analogical equation is critical.

- \Rightarrow Design of a new heuristic:
 - Analogical terms are chosen according to their longest common substring.
 - Can be pre-computed and saved on disk to speed up searches.

BENEFIT: number of attempted analogical equations that have at least one solution increased from 28% to 52%.

(GREYC@IWSLT 2008) 6 / 12

NEW ALIGNMENT METHOD

"Perfect" alignments contain those words that strictly appear on the same lines:

CONTEXTS

Allons boire une _ ou deux . \leftrightarrow Let 's have a _ or two . Une _ et un café . \leftrightarrow One _ and one coffee . Je voudrais de la _ , s' il vous plaît . \leftrightarrow I 'd like some _ , please .

```
"Perfect"
```

Je voudrais _ , s' il vous plaît ↔ l 'd like _ , please

CONTEXTS

un verre de vin $_$. \leftrightarrow a glass of wine $_$. de la bière $_$. \leftrightarrow some beer $_$.

NEW ALIGNMENT METHOD

How to extract the alignments for ambiguous terms?

```
Allons boire un verre . 
 \leftrightarrow Let 's have a drink . Allons boire une bière ou deux . 
 \leftrightarrow Let 's have a beer or two .
```

Une bière et un café . \leftrightarrow One beer and one coffee .

Je voudrais un verre de vin , s' il vous plaît . \leftrightarrow I 'd like a glass of wine , please . Je voudrais de la bière , s' il vous plaît . \leftrightarrow I 'd like some beer , please . Nous prendrons un pichet de vin . \leftrightarrow We 'll have a jug of wine .

Make them perfect: split the corpus.

"PERFECT"

verre ↔ drink

 \Rightarrow

Contexts

Allons boire un $_$. \leftrightarrow Let 's have a $_$.

"PERFECT" verre \leftrightarrow glass

CONTEXTS

Je voudrais un $_$ de vin , s' il vous plaît . \leftrightarrow l 'd like a $_$ of wine , please .

$$P(\text{drink}|\text{verre}) = 0.5$$
 $P(\text{verre}|\text{drink}) = 1$
 $P(\text{glass}|\text{verre}) = 0.5$ $P(\text{verre}|\text{glass}) = 1$

(GREYC@IWSLT 2008) 8 / 12

NEW ALIGNMENT METHOD

Experiments on development set 3, using the first half for tuning and the second half for testing:

(GREYC@IWSLT 2008) 9 / 12

DETAILS OF THE RUNS

3 runs for each task:

PRIMARY: ALEPH (EBMT), with training data inflated with alignments generated by malign [Lardillleux & Lepage, next Wednesday];

- CONTRAST 1: Moses [Koehn et al., 2007] with translation tables generated by malign;
- CONTRAST 2: Moses with default translation tables (refined alignments from IBM model 4, with Giza++ [Och & Ney, 2003]).

(GREYC@IWSLT 2008) 10 / 12

EVALUATION RESULTS

Results with CRR, case+punc:

(GREYC@IWSLT 2008) 11 / 12

RESULTS SYNTHESIS

In most cases: $primary < contrast1 \le contrast2$

- If one sees the contrast2 as a kind of baseline, then our system could not even reach the baseline of SMT in its current state (recursivity not ready at the time of evaluation).
- + only training data was used...(and you?)
- There is room for improvement!

(GREYC@IWSLT 2008) 12 / 12