FBK @ IWSLT-2008

N. Bertoldi, M. Federico, R. Cattoni, \dagger M. Barbaiani
FBK, Trento - Italy
\dagger Rovira i Virgili University, Tarragona - Spain

October 20th, 2008

FBK goal

Pivot translation in real-world condition

- improving translation for low-resourced languages:
- few parallel data for Italian-centric language pairs: Chinese, Arabic, ...
- improving translation among intra-European languages
- applying pivot-like strategies to adapt SMT systems to different domains
- theoretical foundation of pivot translation task
- mathematically sound definition of approaches
- experimental comparison

FBK @ IWSLT 2008

Most effort on Pivot Task

- good benchmark:
- controlled conditions, controlled domain
- fast development cycle because of small size
- many competitors
- participation to other IWSLT tasks, but with limited effort:
- no use of additional data
- no adaptation to challenge task
- no optimization for speech input

Task Description

- traveling domain
- Basic Travel Expression Corpus
- BTEC tasks:
- translation from Chinese into English and from Chinese into Spanish
- Pivot task:
- translation from Chinese into Spanish without C-S parallel data
- only independent C-E and E-S parallel data available
- Challenge task:
- translation from Chinese into English of tourism-related dialogues (no BTEC)
- input condition:
- automatic and correct transcriptions
- read (BTEC and Pivot) and spontaneous (Challenge) speech

Task description: data

- training data:
- monolingual corpora: C1 and C2, E1 and E2, and S1
- parallel corpora: CE2, ES1, development sets (with multiple refs)
- CES1 never used as trilingual parallel corpus
- no additional data (although allowed)
- development data
- dev set: 506 Chinese sentences with 16 refs in English and Spanish
- other dev sets for C-E BTEC and Challenge tasks
- blind devtest set: 1K sentences with 1 reference
- reduced training corpora (19K sentences) for development
- test set: 507 Chinese sentences
- preprocessing: tokenization, numbers into digits, Chinese word-segmentation

Pivot Task description: data

task	data	sent	source		target	
			words	dict	words	dict
Btec	CE1* *	18,974	161 K	8,017	172 K	8,210
	CS1* *	18,974	161 K	8,017	176 K	10,773
Pivot	CE2*	18,999	150 K	8,114	172 K	8,631
	ES1* *	18,974	172 K	8,210	176 K	10,773
Btec	CE1+dev	54,021	439 K	8,847	499 K	10,765
	CS1+dev	28,068	229 K	8,284	250 K	11,734
Pivot	CE2+dev	28,095	217 K	8,987	248 K	8,951
	ES1+dev	19,972	182 K	8,385	177 K	11,019
Challenge	CE1+dev	55,743	447 K	8,864	507 K	11,051

- training data during development (*)
- training data the final submissions including development sets (+dev)

Direct baseline system

- open-source MT toolkit Moses
- statistical log-linear model with 8 features
- weight optimization by means of a minimum error training procedure
- phrase-based translation model:
- direct and inverted frequency-based and lexical-based probabilities
- phrase pairs extracted from symmetrized word alignments (GIZA++)
- 5-gram word-based LM exploiting Improved Kneser-Ney smoothing (IRSTLM)
- standard negative-exponential distortion model
- word and phrase penalties

Direct system: performance

	data	BLEU OOV	applied to	
Chinese-English	CE1* *	26.91	2.00	Btec and Challenge
	CE2 *	19.09	3.80	Pivot
English-Spanish	ES1* *	49.13	2.01	Pivot
Chinese-Spanish	CS1* *	23.67	2.00	Btec

- systems trained on reduced data
- performance on the blind devtest, extracted from CE1 and ES1
- significant mismatch between corpora 1 and 2
- translation from Chinese into English easier than into Spanish
- translation from English into Spanish "easy"

Pivot SMT

- Goal:
- translation from Chinese into Spanish without parallel data
- Assumption:
- two parallel corpora C-E and E-S, with independent English side - full-fledged Direct systems trained on C-E and E-S parallel data
- Approaches:
- Coupling C-E and E-S systems at sentence level
- Coupling C-E and E-S systems at phrase level
- Synthesizing C-S parallel data and building a full-fledged C-S system

Coupling systems at sentence level

Coupling systems at phrase level

Synthesis of parallel data

Official results of Pivot Task

system	run	ASR.1	CRR
Cascade 1-best	contr6	29.20	33.52
Cascade Nbest	contr7	32.69	37.41
PT Composition	contr4	28.52	33.13
Synthesis	prim	$\mathbf{3 3 . 1 1}$	$\mathbf{3 9 . 6 9}$
	contr1	34.14	39.93

- big gain using 100-best wrt to 1 best
- less than 2 BLEU points wrt top performing (39.69 vs 41.57)
- avoiding the CE translation, which poorly performs, is a winning strategy
- ASR (- $13 / 17 \%$ relative) confirms the same results as CRR
- contr1 includes the C-S parallel data of the dev set, not independent data
- using correct Spanish translations is better than using synthesized ones

Thank you!

Official results of all submissions

Task	System	Run	BLEU	
			ASR.1	CRR
CE-btec	Direct	prim	$\mathbf{3 6 . 9 1}$	$\mathbf{4 0 . 1 8}$
		contr	36.45	$"$
CS-btec	Direct	prim	$\mathbf{2 6 . 6 7}$	$\mathbf{3 0 . 2 9}$
		contr	27.05	$"$
CE-chal	Direct	prim	$\mathbf{2 3 . 8 4}$	$\mathbf{2 7 . 0 0}$
		contr	23.88	$"$
CES-pivot	Cascade	contr6	29.20	33.52
	Nbest	contr7	32.69	37.41
	PhraseTable	contr4	28.52	33.13
		contr5	30.09	$"$
	Synthesis	prim	$\mathbf{3 3 . 1 1}$	$\mathbf{3 9 . 6 9}$
		contr2	35.94	,
		contr1	34.14	39.93
		contr3	35.98	$"$

