Overview of the IWSLT 2007 Evaluation Campaign

Cameron S. Fordyce

Center for the Evaluation of Language and Communication Technologies, Trento

fordyce@celct.it

Abstract

In this paper we give an overview of the 2007 evaluation campaign for the International Workshop on Spoken Language Translation (IWSLT)¹. As with previous evaluation campaigns, the primary focus of the workshop was the translation of spoken language in the travel domain. This year there were four language pairs; the translation of Chinese, Italian, Arabic, and Japanese into English. The input data consisted of the output of ASR systems for read speech and clean text. The exceptions were the challenge task of the Italian English language pair which used spontaneous speech ASR outputs and transcriptions and the Chinese English task which used only clean text. A new characteristic of this year's evaluation campaign was an increased focus on the sharing of resources. Participants were requested to submit the data and supplementary resources used in building their systems so that the other participants might be able to take advantage of the same resources. A second new characteristic this year was the focus on the human evaluation of systems. Each primary run was judged in the human evaluation for every task using a straightforward ranking of systems. This year's workshop saw an increased participation over last year's workshop. This year 24 groups submitted runs to one or more of the tasks. compared to the 19 groups that submitted runs last year [1]. Automatic and human evaluation were carried out to measure MT performance under each condition, ASR system outputs for read speech, spontaneous travel dialogues, and clean text.

1. Introduction

IWSLT is an MT evaluation campaign organized by the Consortium for Speech Translation Advanced Research (C-Star)². This consortium provides a common framework to compare and improve the state-of-the-art speech-to-speech translation (SST) technologies[1]. C-Star has organized annual workshops with progressively more challenging SST tasks with Japanese, Chinese, Arabic, Italian into English. The 2004 IWSLT workshop focused on evaluation metrics for SST[2]. The 2005 IWSLT focused on the translation of ASR outputs from read-speech inputs[3]. The 2006 IWSLT workshop focused on spontaneous translation of Chinese into English, and the translation of read Japanese, Arabic, and Italian into English[1].

The theme of this year's evaluation campaign remained the same as last year's, the translation of spontaneous-speech input. As with last year, the evaluation tasks were divided into

¹ http://iwslt07.itc.it

² <u>http://www.c-star.org/</u>

two major groups, two "Challenge" tasks for spontaneous speech and two "Classical" tasks focusing on read-speech. The challenge tasks included the languages Chinese and Italian to English. The Chinese challenge task was structured to mirror last year's CE challenge task. Unfortunately, due to the unavailability of new CE test data at the last moment, clean text was substituted. The Italian to English challenge task marked a departure from the previous year in that the spontaneous speech came from a collection of transcribed dialogues from travel agent and client interactions via telephone.

The classical tasks included read speech for both Japanese to English and Arabic to English translation directions.

Participants were supplied with in-domain resources from several sources. The principal source for training, development, and evaluation data was the *Basic Travel Expression Corpus* (BTEC)[4]. Training and development data was made available from previous editions of the workshop. In addition, the SITAL[5]³ corpus of transcribed travel agent-client dialogues was made available to participants for the Italian to English language pair.

In the previous year's workshop, tasks were further divided in two data tracks, (OPEN, CSTAR)[1]. The primary difference between these two tracks was the possibility of the participants in the CSTAR track to use all the proprietary BTEC data rather than the BTEC data made available to all participants. In order to create a more level field for the comparison of systems, for this year's evaluation campaign it was decided to reduce the possible data conditions to one, the equivalent of an open track. Participants were allowed to use any publically available resource as long as it was affordable. Resources that were proprietary and unable to the general public were strongly discouraged. BTEC data from previous years, both training, development, and previous test sets were made available to this year's participants.

For the evaluation of system submissions, automatic evaluation and human evaluation were carried out. For the automatic metric, BLEU[6], with six references was used for the Japanese, Arabic, and Chinese tasks. For the Italian task, BLEU with four references was used. For the human

³ The acronym SI-TAL or SITAL is used in during the evaluation campaign. This corpus is also referred to as the ADAM[5] corpus. SI-TAL (Integrated System for the Automatic treatment of Language) was a National Project for the creation of large linguistic resources and software tools for Italian written and spoken language processing.

evaluation, all primary submissions for all tasks were evaluated this year using a ranking system based on work done by Callison-Burch, et al. for the WMT07 shared task[7]. In addition to this approach, NIST adequacy/fluency metric was also applied for three submissions of each of the ASR tasks and for the CE clean task.

2. IWSLT 2007 Evaluation Campaign

2.1. IWSLT 2007 Spoken Language Corpus

This year's evaluation campaign relied on two distinct corpora in the travel domain, the BTEC and the SITAL corpora, a corpus of transcribed spoken Italian. Some additional linguistic resources such as Named-Entity lists were provided by the organizers. As part of the goal of this year's workshop, additional resources such as parallel corpora, linguistic tools, etc. were solicited from participants.

2.1.1. The BTEC Corpus

The BTEC corpus contains data for all the included languages of this year's evaluation campaign. BTEC contains sentences similar to those found in travelers phrase books[4]. The development, and training data has been released in previous campaigns[1, 2, 3]. The test set differed from last year's edition of IWSLT in that the recorded speech prompts came directly from the BTEC corpus rather than the transcripts of semi-spontaneous speech elicited for the Chinese to English challenge task[1]. There were 489 read sentences in this year's test set and each sentence had one canonical translation, with 5 additional translations created by paraphrasing the canonical translation.

2.1.2. The SITAL Corpus

The SITAL corpus consists of recorded simulated interactions between a travel agent and clients of a fictious travel agency in Italian[5]. The interactions consisted mainly of transactions concerning plane, railroad ticket purchases and hotel reservations. The corpus consists of human-human and human-machine interactions. Only recordings of the humanhuman interactions were used in this workshop. Participants were provided with data for development that included 996 transcribed utterances without case or punctuation information. The test set contained 724 sentences of complete dialogues. The utterances contained transcribed speech events such as repetitions, hesitations, and corrections which make translation very difficult. The utterances contained contiguous dialogues and participants were provided with dialogue boundaries for the development set.

For the development set one reference translation in English was provided. Both the test and development reference translations had punctuation and case information inserted manually. Translators were instructed to disregard some of the speech events, such as repetitions, but corrections were translated into English.

2.1.3. Additional Resources and participant supplied Resources

Some additional resources were provided by the organizers such as a named entity list for the IE challenge task, and scripts to tokenize the translation system output.

In addition, participants were requested to share the resources that were used in the building of their systems. This request reflected one of the main intentions of the workshop which was to foster cooperation in the creation of MT systems⁴. Further, systems were to be built with publically available and reasonably affordable data resources.

Participants did not have to provide resources directly. Nor were participants required to provide resources that they had acquired elsewhere and then modified in some way (i.e. cleaned, corrected, enhanced, etc.). In the latter case, participants were asked to provide a reference to the original provider or creator of the resource.

Acceptable Resources. Some examples of resources that could be used include:

- Publicly available aligned or monolingual corpora such as the EuroParl corpus or LDC data
- Publicly available annotated treebanks.

While the number of participants who contributed resources was not overwhelming, only 7 of 24 groups submitted resources, the list of publically available resources for all the tasks is quite long⁵. Submitted resources include monolingual and parallel corpora as well as treebanks, open source decoders, sentence aligners, and morphological analyzers.

2.2. Input Data Specifications

Two input types were provided this year. ASR system outputs in the form of 1-Best, N-Best lists, and lattices (HTK word lattice format) were provided to the participants for the ASR input task. For the clean data, transcriptions of the read speech was provided. Input data was case-insensitive and without punctuation information.

2.3. Evaluation Specifications

2.3.1.Data Specifications for Submissions

The evaluation specifications for IWSLT 2007 for system outputs follow closely the *official* evaluation specifications for IWSLT06[1], i.e. submitted sentences were to be case-sensitive and with punctuation marks tokenized. No other specifications were considered this year.

⁴ See the call for participation,

http://iwslt07.itc.it/menu/cfp.pdf.

See http://iwslt07.itc.it/menu/resources.html.

2.3.2. Automatic Evaluation

Participants were asked to submit their runs via a web interface. The first run submitted was considered the "primary" run, or the run that each participant wanted considered for system comparison and for human evaluation. Additional runs could be submitted subsequently and were considered contrastive runs.

The BLEU[6] automatic metric was used to automatically rank systems for each task. For JE, AE classical tasks and for CE, six references were used. For Italian, four reference translations were prepared. The BLEU metric was chosen to measure system performance as it has been shown to correlate with human judgments[12, 13].

After submitting runs, participants were provided with the system rankings for all primary submissions and all other contrastive runs via email. See Tables 6-9 for the primary rankings according to BLEU scores. See Appendix B for a complete ranking of all submissions by BLEU score for each task.

2.3.3. Human Evaluation

A recently introduced human evaluation metric, the ranking of sentences[7], was adopted for this year's workshop and was applied to all the submitted runs. In addition, the NIST adequacy/fluency subjective evaluation metrics were applied to the top three systems as judged by the automatic metric. The ranking of sentences was used in conjunction with two other approaches during the recent WMT07 shared task[7]⁶.

Human evaluation of MT systems is typically a timeconsuming and expensive endeavor. Many different approaches to the human evaluation of translation have been proposed from reading comprehension tests[9] to subjective scores of adequacy and fluency where adequacy refers generally to the preservation of information and fluency refers generally to the naturalness of the translation[8]. The latter method has been the most widely used for the evaluation of MT system outputs in such evaluation campaigns as the annual NIST Machine Translation Workshops⁷.

Each metric has a five-point scale. For adequacy, the five point scale indicates how much of the information expressed in a reference translation is preserved in the system translation. 1 equals no information and 5 equals all information has been preserved. For fluency, a similar scale from 1 to 5 indicates how similar the submitted run is to natural English. Figure 1 presents an example of the adequacy/fluency metric.

These measures were conceived with the goal of obtaining independent measures. In many cases, however, these metrics appear to be highly correlated [7, 10].

Translation	Adequacy	Fluency
IWSLT07_TEST_463-spk24_3\Where is the lavatory ?	$\begin{array}{c} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$	$\begin{array}{c} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$
IWSLT07_TEST_463\Where's the toilet?	$\begin{array}{c} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$	$\begin{array}{c} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$
IWSLT07_AE_TEST_463\Where is the lavatory ?	$\begin{array}{c} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$	$\begin{array}{c} \circ \circ \circ \circ \circ \circ \\ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$
Annotator: cam Task: IWSLT07 Arabic English ASR NIST		Annotate
Instructions	5= All Meaning 4= Most Meaning 3= Much Meaning 2= Little Meaning 2= Little Meaning 2= Disfluent English	

Figure 1 An example of the adequacy/fluency metric for the Arabic task.

2.3.4. Ranking Sentences

When evaluating multiple submitted sentences together using NIST adequacy/fluency, it has been observed that evaluators tend to assign fluency and adequacy scores relative to the other presented sentences[7, 10]. Further, evaluators using this metric often do so without training, which sometimes makes it difficult for them to regard the five-point scales as absolutes.

In the ranking metric, no more than five of the submitted sentences are presented to the evaluator with the source sentence and one reference translation. The evaluator must then rank the sentences from best to worst using a five point scale. Ties between systems are allowed. The system outputs were presented so that each system's output was presented together with the outputs of all the other systems during the course of the evaluation.

Figure 2 shows the web-based interface for the ranking metric.

Translation	Rank				
WELTOT OF TECT 150 Commentations 1 diament address 2	0	0	0	0	0
IWSEI07_CE_IESI_IS9/Can you mail this mail address ?	l Worst	2	3	4	5 Best
Will this e mail mail ?	0	0	0	0	0
	1 Worst	2	3	4	5 Best
WSLT07_CE_TEST_159\Can you accept mail this mail uddress ?	0	0	0	0	0
	1 Worst	2	3	4	5 Best
IWCI TO7 TEST 150 This address E weil will you accent	0	0	0	0	0
mail.	1 Worst	2	3	4	5 Best
	0	0	0	0	0
IWSLT07_CE_TEST_159\Can you mail this e-mail ?	1 Worst	2	3	4	5 Best
Annotator: cam Task: IWSLT07 Chinese English Clean				A	nnotate

Figure 2 An example of the ranking metric for the Chinese Clean task.

All human judgments for both ranking and adequacy/fluency metrics were collected with a web-based interface. Unlike in [7], the different metrics were not alternated. For each task,

⁶ See http://www.statmt.org/wmt07/shared-task.html

⁷ See <u>http://www.nist.gov/speech/tests/mt/</u> for more information on NIST MT evaluations.

systems were evaluated first with the ranking metric and then later with the adequacy/fluency metric. Also, evaluators were specifically assigned tasks to evaluate.

For the classical tasks, 300 sentences from the 489 sentences present in each of the JE, AE, and CE test sets were randomly selected and presented to at least 3 evaluators. Since the ranking metric requires that each submission be compared to the other system outputs, each sentence may be presented multiple times but in the company of different sets of systems.

For the challenge task, 300 sentences from the 724 sentences in the evaluation set were randomly selected after the 724 sentences were pruned of duplicates entries. This resulted in a set of 689 sentences from which the 300 sentences were chosen for the human evaluation.

3. Evaluation Results

3.1. Human Evaluation Results

In this section the results of the human evaluations are presented. For each task and input condition all submissions were evaluated by at least 3 human evaluators with the ranking metric described above. Evaluators included 2 volunteers with experience in evaluating machine translation and 6 paid evaluators who were provided with a brief training in machine translation evaluation.

In the ranking tables, the score is the average number of times that a system was judged to be better than any other system[7].

For the adequacy/fluency measures, only the top three systems for each ASR task and the Chinese English Clean task were evaluated. In order to account for variations in evaluator scoring for adequacy and fluency, the scores were normalized on a per-judge basis as suggested by Blatz et al[11].

3.1.1. System Results

Tables 1 through 4 show the results of the human evaluation using the ranking method. The best score is presented in bold.

IF	ASR	IE	Clean
SYSTEM	% BETTER	SYSTEM	% BETTER
FBK	48.5	FBK	52.5
RWTH	42.4	RWTH	50.6
ATR	40.2	ATR	45.9
UEDIN	29.0	MIT	33.1
UW	27.8	NTT	32.5
MIT	24.6	INESCID	28.9
NTT	24.2	HKUST	23.3
RALI	24.2	ITI	19.6
INESCID	18.8	UW	4.0
HKUST	18.4		

Table 1 Human Rankings: IE, ASR and Clean.

JE ASR JE Clean		Clean	
SYSTEM	% BETTER	SYSTEM	% BETTER
ATR	27.3	CMU	32.7
CMU-UKA	26.8	ATR	30.5
UEKAE	24.2	FBK	30.5
NTT	23.5	TOTTORI	28.0
FBK	23.3	UEKAE	27.4
DCU	19.2	NTT	27.3
HKUST	18.3	HKUST	21.9
		DCU	21.2
		GREYC	21.0

Table 2 Human Rankings: JE, ASR and Clean.

AE	Clean	AE ASR	
SYSTEM	% BETTER	SYSTEM	% BETTER
DCU	45.1	UPC	31.8
UPC	42.9	MIT	31.4
UEKAE	36.4	DCU	28.1
UMD	36.0	UW	26.9
UW	35.4	NTT	25.5
MIT	35.1	CMU	25.5
CMU	33.9	UMD	25.0
LIG	33.9	LIG	24.2
NTT	25.3	UEKAE	19.8
GREYC	21.7	HKUST	11.2
HKUST	13.1		

Table 3 Human Rankings: AE, Clean and ASR..

CE Clean		
SYSTEM	% BETTER	
CASIA	37.6	
I2R	37.0	
ICT	34.8	
RWTH	32.4	
FBK	30.6	
CMU	30.6	
UPC	28.3	
XMU	28.1	
HKUST	25.5	
MIT	25.0	
NTT	24.6	
ATR	24.2	
UMD	23.6	
DCU	18.6	
NUDT	16.1	

Table 4 Human Rankings: CE Clean.

In order to compare tasks from this evaluation campaign with previous workshops, the top three systems for each ASR input condition for IE, JE, AE and the CE clean tasks were evaluated using the NIST fluency/adequacy metrics. The best scores are presented in bold.

NIST IE ASR			
SYSTEM	ADEQUACY	FLUENCY	
ATR	0.529	0.446	
FBK	0.564	0.479	
RWTH	0.544	0.484	
	NIST JE ASR		
SYSTEM	ADEQUACY	FLUENCY	
CMU-UKA	0.501	0.505	
ATR	0.492	0.540	
UEKAE	0.491	0.510	
	NIST CE Clean		
SYSTEM	ADEQUACY	FLUENCY	
CMU	0.472	0.528	
ICT	0.511	0.521	
I2R	0.507	0.547	
NIST AE ASR			
SYSTEM	ADEQUACY	FLUENCY	
UW	0.430	0.404	
MIT	0.447	0.450	
UPC	0.453	0.431	

Table 5 NIST adequacy and fluency scores normalized for all ASR input conditions and CE Clean. Top three systems to be evaluated for adequacy and fluency were chosen by BLEU rankings.

IE Clean		
System	BLEU	
RWTH_IE_clean_primary_01	0.4531	
FBK_IE_clean_primary_01	0.4432	
ATR_IE_CLEAN_primary_01	0.3828	
NTT_IE_clean_primary_01	0.3091	
UEDIN_IE_clean_primary_01	0.2909	
MIT-LL+AFRL_IE_clean_primary_01	0.2842	
INESCID_IE_clean_primary_02	0.2657	
UW_IE_clean_primary_01	0.2651	
HKUST_IE_clean_01	0.1702	
ITI_UPV_IE_clean_primary_01	0.1613	
IE ASR		
FBK_IE_ASR_primary_01	0.4229	
RWTH_IE_ASR_primary_01	0.4128	
ATR_IE_ASR_primary_01	0.3550	
NTT_IE_ASR_primary_01	0.2868	
UEDIN_IE_ASR_primary_01	0.2662	
UW_IE_ASR_primary_01	0.2540	
MIT-LL+AFRL_IE_ASR_primary_01	0.2500	
INESCID_IE_ASR_primary_02	0.2416	
RALI_IE_ASR_primary_01	0.2106	
HKUST_IE_ASR_01	0.1702	

Table 6 Italian systems ranked by BLEU score.

JE Clean		
System	BLEU	
TUBITAK-UEKAE_JE_clean_primary_01	0.4841	
CMU-UKA_JE_clean_primary	0.4828	
FBK_JE_clean_primary_01	0.4789	
ATR_JE_CLEAN_primary_01	0.4745	
NTT_JE_clean_primary_01	0.4365	
TOTTORI_JE_clean_01	0.4321	
HKUST_JE_CLEAN_01	0.4051	
GREYC_JE_clean_primary_1	0.3964	
DCU_JE_CLEAN_primary_01	0.3959	
JE ASR		
System	BLEU	
CMU-UKA_JE_ASR_primary	0.4386	
TUBITAK-UEKAE_JE_ASR_primary_01	0.4269	
ATR_JE_ASR_primary_01	0.4144	
FBK_JE_ASR_primary_01	0.3946	
NTT_JE_ASR_primary_01	0.3535	
HKUST_JE_ASR_01	0.3249	
DCU_JE_ASR_primary_01	0.3182	

Table 7 Japanese systems ranked by BLEU score.

3.2.Automatic Evaluation Results

The following tables show the ranking of the primary submitted runs for all tasks according to BLEU score.

For both input conditions of the IE challenge task, the same three participants, RWTH, FBK and NiCT/ATR are clustered together at the head of the list.

AE Clean		
System	BLEU	
TUBITAK-UEKAE_AE_clean_primary_01	0.4923	
UMD AE clean 01	0.4858	
UPC_AE_clean_primary_01	0.4804	
DCU_AE_clean_primary_01	0.4709	
MIT-LL+AFRL AE clean primary 01	0.4553	
CMU AE CLEAN primary 02	0.4463	
UW AE clean primary 01	0.4162	
LIG AE clean primary 01	0.4135	
NTT AE clean primary 01	0.3403	
GREYC AE clean primary 1	0.3290	
HKUST AE clean 01	0.1951	
AE ASR		
UPC AE ASR primary 01	0.4445	
MIT-LL+AFRL AE ASR primary 01	0.4429	
UW AE ASR primary 01	0.4092	
DCU AE ASR primary 01	0.3942	
UMD AE ASR primary 01	0.3908	
LIG_AE_ASR_primary_01	0.3804	
CMU_AE_ASR_primary_02	0.3756	
TUBITAK-UEKAE_AE_ASR_primary 01	0.3679	
NTT_AE_ASR_primary_01	0.3626	
HKUST AE ASR 01	0.1420	

Table 8 Arabic systems ranked by BLEU score.

CE Clean	
System	BLEU
I2R_CE_clean_primary_01	0.4077
ICT_CE_clean_Primary_01	0.3750
CMUsamt_CE_CLEAN_primary_01	0.3744
RWTH_CE_clean_primary_01	0.3708
CASIA_CE_clean_primary_01	0.3648
MIT-LL+AFRL_CE_clean_primary_01	0.3631
FBK_CE_clean_primary_01	0.3472
HKUST_CE_clean_01	0.3426
UMD_CE_clean_01	0.3211
ATR_CE_CLEAN_primary_01	0.3133
UPC_CE_clean_primary_01	0.2991
XMU_CE_clean_primary_01	0.2888
NTT_CE_clean_primary_00	0.2789
DCU_CE_CLEAN_primary_01	0.2737
NUDT_CE_clean_primary_01	0.1934

Table 9 Chinese systems ranked by BLEU score.

4. Discussion

4.1. Challenge and Classical Tasks for 2007

The challenge tasks planned for this year were intended to further the direction begun last year towards the translation of spontaneous. The Italian task presented a much more difficult type of input speech.

4.2. Participant Supplied Resources

While the number of participants that submitted resources by the deadline (approximately five weeks before test submission deadline) was somewhat limited, the number of resources collected was very encouraging. A problem with the request, however, was the definition of "publicly available" and of "affordable". It was clear that both terms are open to interpretation especially when resources require license agreements to be signed and when some resources may be with the allowable budget of some research groups but not others.

4.3. Human Evaluation

This year's evaluation campaign adopted a new human evaluation metric which simplified the evaluation process. This metric has been shown to be more efficient in terms of judgement times, more consistent in inter-annotator agreements[7]. Here, we used the kappa coefficient[14] to measure inter-annotator agreement using the same values as in [7] for P(E), i.e. 1/3. For all ranking tasks, the inter-annotator agreement was relatively good, with K = 0.608. According to Landis and Koch[15], the range of K 0.41 to 0.6 is moderate agreement. Individual rankings for certain tasks showed higher inter-annotator agreement.

With this metric, human evaluation of submitted runs was able to be offered to all runs of all tasks.

5. Conclusions

The 2007 IWSLT evaluation campaign saw increased number of groups submitting systems to one or more tasks continuing the growth of the IWSLT series of workshops.

A new human evaluation metric was adopted which proved to be efficient and allowed the evaluation of all tasks by human evaluators with this metric.

6. Acknowledgements

I would like to acknowledge the C-Star partners for their support in the preparation of this year's evaluation campaign. In particular, I would like to thank Mark Fuhs and Matthias Eck from CMU/UKA, and Nicola Bertoldi and Roldano Cattoni from FBK-Irst for their help in preparing the Arabic and Italian data. Very special thanks go to Michael Paul for his help both for the Japanese data, but especially for his help with the Chinese data. Thanks go to Philipp Koehn of the University of Edinburgh for permission to use the human evaluation interface used for the WMT07 shared task and to Josh Schroeder for explaining how it all worked. Thanks also to Chris Callison-Burch for his scripts and advice in scoring the human evaluations. Thanks to the all evaluators who took part in the human evaluation, especially, to John Henderson of MITRE. Finally, thanks go to all the participants of this vear's workshop.

7. References

- M. Paul, "Overview of the IWSLT 2006 Evaluation Campaign," in Proc. of the International Workshop of Spoken Language Translation, Kyoto, Japan, 2006, pp.1-15.
- [2] Y. Akiba, M. Federico, N. Kando, H. Nakaiwa, M. Paul, and J. Tsujii, "Overview of the IWSLT04 evaluation campaign," in *Proc. of the International Workshop on Spoken Language Translation*, Kyoto, Japan, 2004, pp. 1-12.
- [3] M. Eck and C. Hori, "Overview of the IWSLT 2005 evaluation campaign," in *Proc. of the International Workshop on Spoken Language Translation*, Pittsburgh, USA, 2005, pp. 11-32.
- [4] T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and S. Yamamoto. "Toward a Broad-coverage Bilingual Corpus for Speech Translation of Travel Conversation in the Real World" in *Proc. of LREC 2002*, Las Palmas, Spain, 2002.
- [5] R. Cattoni, M. Danieli, V. Sandrini, C. Soria, "ADAM: the SI-TAL Corpus of Annotated Dialogues", in *Proc. of LREC 2002*, Las Palmas, Spain, 2002.
- [6] K. Papineni, S. Roukos, T. Ward, and W. Zhu, "BLEU: a method for automatic evaluation of machine translation," in *Proc. of the 40th ACL*, Philadelphia, USA, 2002, pp. 311–318.
- [7] C. Callison-Burch, C. Fordyce, P. Koehn, C. Monz, and J. Schroeder, "(Meta-) Evaluation of Machine Translation," in *Proc. of the Second Workshop on Statistical Machine Translation*, Prague, 2007, pp. 136-158.
- [8] LDC. 2005. Linguistic data annotation specification: Assessment of fluency and adequacy in translations. Revision 1.5.

- [9] D. Jones, W Shen, N. Granoien, M. Herzog, and C. Weinstein, "Measuring translation quality by testing English speakers with a new defense language proficiency test for Arabic," in *Proc. of the 2005 International Conference on Intelligence Analysis*, McLean, VA, 2005.
- [10] P. Koehn and C. Monz, "Manual and automatic evaluation of machine translation between European language," in *Proc. of NAACL 2006 Workshop on Statistical Machine Translation*, New York, 2006.
- [11] J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte, A. Kulesza, A. Sanchis, and N. Ueffing, "Confidence estimation for machine translation," in *CLSP Summer Workshop Final Report WS2003*, Johns Hopkins University, 2003.
- [12] D. Coughlin, "Correlating automated and human assessments of machine translation quality," in *Proc. Of MT Summit IX*, New Orleans, 2003.
- [13] G. Doddington, "Automatic evaluation of machine translation quality using n-grams co-occurence statistics," in *Human Language Technology: Notebook Proceedings*, San Diego, 2002, pp. 128-132.
- [14] J. Carletta, "Assessing Agreement on classification tasks: The kappa statistic," in *Computational Linguistics*, 22(2):249-254, 1996.
- [15] J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," *Biometrics*, 33:159-174, 1977.
- [16] A. Finch, E. Denoual, H. Okuma, M. Paul, H. Yamamoto, K. Yasuda, R. Zhang and E. Sumita, "The NICT/ATR Speech Translation System for IWSLT 2007"," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [17] Z. He, Haitao Mi, Y. Liu, W. Luo, Y. Huang, Z. Ren, Y. Lu and Q. Liu, "The ICT Statistical Machine Translation Systems for IWSLT 2007," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [18] Y. Zhou, Y. He and C. Zong, "The CASIA Phrase-Based Statistical Machine Translation System for IWSLT 2007," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [19] Y. Chen, X. Shi and C. Zhou, "The XMU SMT System for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [20] L. Besacier, M. Amar and L. Viet-Bac, "The LIG Arabic / English Speech Translation System at IWSLT 07," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [21] J. Murakami, M. Tokuhisa and S. Ikehara, "Statistic Machine Translation using Large J/E Parallel Corpus and Long Phrase Tables," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [22] A. Patry, P. Langlais and F. Béchet, "MISTRAL: A Lattice Translation System for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [23] Y. Yves and A. Lardilleux, "The GREYC Machine Translation System for the IWSLT 2007 Evaluation Campaign," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.

- [24] B. Chen, J. Sun, H. Jiang, M. Zhang and A. Ti Aw, "I2R Chinese-English Translation System for IWSLT 2007," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [25] N. Bertoldi, M. Cettolo, R. Cattoni and M. Federico, "FBK @ IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [26] W. Chao and Z. Li, "NUDT Machine Translation System for IWSLT2007," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [27] P. Lambert, M. Costa-jussà, J. Crego, M. Khalilov, J. Giménez, J. Mariño, R. Banchs, J. Fonollosa and H. Schwenk, "The TALP Ngram-based SMT System for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [28] J. Schroeder and P. Koehn, "The University of Edinburgh System Description for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [29] H. Hassan, Y. Ma and A. Way, "MaTrEx: the DCU Machine Translation System for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [30] A. Mauser, D. Vilar, G. Leusch, Y. Zhang and H. Ney, "The RWTH Machine Translation System for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [31] J. Graça, D. Caseiro and L. Coheur, "The INESC-ID IWSLT07 SMT System," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [32] W. Shen, B. Delaney, T. Anderson and R. Slyh, "The MIT-LL/AFRL IWSLT-2007 MT System," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [33] T. Watanabe, J. Suzuki, K. Sudoh, H. Tsukada and H. Isozaki, "Larger Feature Set Approach for Machine Translation in IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [34] K. Kirchhoff, "The University of Washington Machine Translation System for the IWSLT 2007 Competition," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [35] I. Lane, A. Zollmann, T. Linh Nguyen, N. Bach, A. Venugopal, S. Vogel, K. Rottmann, Y. Zhang and A. Waibel, "The CMU-UKA Statistical Machine Translation Systems for IWSLT 2007," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [36] Y. Lepage and A. Lardilleux, "The GREYC Machine Translation System for the IWSLT 2007 Evaluation Campaign," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.
- [37] Y. Shen, C. Lo, M. Carpuat and D. Wu, "HKUST Statistical Machine Translation Experiments for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [38] V. Alabau, A. Sanchis and F. Casacuberta, "Using Word Posterior Probabilities in Lattice Translation," Proc. of the

International Workshop on Spoken Language Translation, Trento, 2007.

- [39] C. Mermer, H. Kaya and M. Ugur Dogan, "The TUBITAK-UEKAE Statistical Machine Translation System for IWSLT 2007," Proc. of the International Workshop on Spoken Language Translation, Trento, 2007.
- [40] C. Dyer, "The University of Maryland Translation System for IWSLT 2007," *Proc. of the International Workshop on Spoken Language Translation*, Trento, 2007.

8. Appendix: MT System Overview:

Research Group	MT System Description	Type	MT System
ATP Spoken Language Communication	The NICT/ATP Speech Translation System for IWSI T	Dhrase	NICT/ATP
Range Communication	2007	hasad SMT	NIC I/AIX
Research Lab	2007 The LOT Statistical Marking Translation Statement for	Dased Sivi I	IOT
Chinese Academy of Sciences, Inst. of	The ICT Statistical Machine Translation Systems for	Syntax-	ICI
Computing Technology, Key Laboratory	IWSL1 2007	based SMT	
of Intelligent Information Processing		<u> </u>	
Chinese Academy of Sciences, Institute	The CASIA Phrase-Based Statistical Machine	Phrase-	CASIA
of Automation, National Laboratory of	Translation System for IWSLT 2007	based SMT	
Pattern Recognition			
Xiamen University, School of	The XMU SMT System for IWSLT 2007	Phrase-	XMU
Information Sciences and Technologies,		based SMT	
Dept. of Cognitive Science			
Univ. J. Fourier (Grenoble). LIG	The LIG Arabic / English Speech Translation System at	SMT	LIG
Laboratory GETALP Team	IWSLT 07		_
Tottori Univ Faculty of Eng Dept of	Statistic Machine Translation using Large I/F Parallel	SMT	TOTTORI
Information and Knowledge Engineering	Corrus and Long Drase Tables	SIVII	1011010
Univ. de Montréel Univ. of Avignon	MISTRAL: A Lattice Translation System for IWSLT	Dhraca	MISTRAL
Univ. de Montreal, Univ. Of Avignon	2007	Fillase-	MISIKAL
OPENG U.S. C. C. P.		Dased SIVIT	CDEVC
GREYC, Univ. of Caen Basse-	The GREYC Machine Translation System for the	EBMT	GREYC
Normandie	TWSL1200/ Evaluation Campaign		
Institute for Infocomm Research	I2R Chinese-English Translation System for IWSLT	SMT	I2R
(Singapore), Dept. of Human Language	2007		
Technology			
FBK - Fondazione Bruno Kesler	FBK @ IWSLT 2007	SMT	FBK
National Univ. of Defence technology,	NUDT Machine Translation System for IWSLT2007	SMT	NUDT
School of Science, Beihang University,			
School of Computer Science			
Universitat Politècnica de Catalunya	The TALP Noram-based SMT System for IWSLT 2007	SMT	TALP
TALP Research Center			
U of Edinburgh School of Informatics	The University of Edinburgh System Description for	Phrase-	LIEDIN
o. of Editorigh, School of Informatics	IWSI T 2007	hased SMT	OLDIN
Dublin City Univ School of Computing	MaTrEx: the DCU Machine Translation System for	FBMT	DCU
Dublin City Oniv., School of Computing	WallEX. the DCO Machine Hansiation System for	LDMI	DCU
DWTH Assher Hail Commenter Calendar	The DWTH Meeting Translation Contemp for IWGLT	Dlama	DWTH
R w IH Aachen Univ., Computer Science	The KWIH Machine Translation System for TWSL1	Phrase-	KWIH
Dept., Human Language Technology and	2007	based SMT	
Pattern Recognition			
INESC-ID, Spoken Language Lab (L2F)	The INESC-ID IWSLT07 SMT System	SMT	INESC-ID
MIT Lincoln Laboratory, Information	The MIT-LL/AFRL IWSLT-2007 MT System	SMT	MIT-LL
Systems and Technology Group, Air			
Force Research Laboratory			
NTT Communication Science	Larger Feature Set Approach for Machine Translation in	Phrase-	NTT
Laboratories	IWSLT 2007	based SMT	
Univ. of Washington, Dept. of Electrical	The University of Washington Machine Translation	SMT	UW
Engineering	System for the IWSLT 2007 Competition		
InterACT Research Laboratories:	The CMU-UKA Statistical Machine Translation	Syntax-	CMU-UKA
Carnegie Mellon Univ (Pittsburgh)	Systems for IWSLT 2007	augmented	_
Univ. of Karlsruhe. (Karlsruhe)		SMT	
Univ of Science and Technology Hong	HKUST Statistical Machine Translation Experiments	Phrase-	HKUST
Kong Dent of Computer Science	for IWSLT 2007	hased SMT	
Institut Tecnològia d'Informètica	Using Word Posterior Probabilities in Lattice	SMT	
Departement de Sistemes Informètica	Translation	51711	111/01 V
Computación	1141151411011		
National Descent Light to C	The THDITAK HEVAE GARGED MELLING TO 1.1	Dhanaa	TIDITAV
National Research Institute of	THE TUBITAK-UEKAE STATISTICAL Machine Translation	Phrase-	IUBIIAK-
Electronics and Cryptology & The	System for IWSL1 2007	based SMT	UEKAE
Scientific and Technological Research			
Council of Turkey			
Univ. of Maryland, Dept. of Linguistics	The University of Maryland Translation System for	Phrase-	UMD
	IWSLT 2007	based SMT	

IE Clean		
System	BLEU	
RWTH_IE_clean_primary_01	0.4531	
FBK_IE_clean_02	0.4444	
FBK_IE_clean_primary_01	0.4432	
RWTH_IE_clean_09	0.4415	
FBK_IE_clean_04	0.4341	
FBK_IE_clean_03	0.4341	
RWTH_IE_clean_06	0.4287	
RWTH_IE_clean_07	0.4284	
RWTH_IE_clean_03	0.4246	
RWTH_IE_clean_02	0.4201	
RWTH_IE_clean_05	0.4166	
RWTH_IE_clean_04	0.4162	
ATR_IE_CLEAN_05	0.4037	
ATR_IE_CLEAN_04	0.3958	
ATR_IE_CLEAN_primary_01	0.3828	
ATR_IE_CLEAN_02	0.3761	
ATR_IE_CLEAN_03	0.3586	
RWTH_IE_clean_08	0.3349	
NTT_IE_clean_primary_01	0.3091	
NTT_IE_clean_02	0.2983	
NTT_IE_clean_04	0.2948	
NTT_IE_clean_03	0.2947	
NTT_IE_clean_05	0.2914	
UEDIN_IE_clean_primary_01	0.2909	
MIT-	0.2842	
LL+AFRL_IE_clean_primary_01		
INESCID_IE_clean_primary_02	0.2657	
UW_IE_clean_primary_01	0.2651	
INESCID_IE_clean_01	0.2635	
ITI_UPV_IE_clean_04	0.2100	
ITI_UPV_IE_clean_03	0.2037	
HKUST_IE_clean_01	0.1702	
ITI_UPV_IE_clean_primary_01	0.1613	

9. Appendix B: Automatic Rankings by BLEU score for all submitted runs

AE Clean		
System	BLEU	
TUBITAK-	0.4923	
UEKAE_AE_clean_primary_01		
UMD_AE_clean_01	0.4858	
UPC_AE_clean_primary_01	0.4804	
MIT-LL+AFRL_AE_clean_02	0.4741	
DCU_AE_clean_primary_01	0.4709	
MIT-LL+AFRL_AE_clean_primary_01	0.4553	
CMU_AE_CLEAN_primary_02	0.4463	
UW_AE_clean_primary_01	0.4162	
LIG_AE_clean_primary_01	0.4135	
NTT_AE_clean_02	0.3446	
NTT_AE_clean_primary_01	0.3403	
GREYC_AE_clean_primary_1	0.3290	
NTT AE clean 03	0.3078	
NTT_AE_clean_05	0.2947	
NTT_AE_clean_04	0.2947	
HKUST_AE_clean_01	0.1951	

IE ASR		
System	BLEU	
FBK_IE_ASR_primary_01	0.4229	
FBK_IE_ASR_02	0.4206	
FBK_IE_ASR_06	0.4165	
FBK_IE_ASR_10	0.4155	
FBK_IE_ASR_05	0.4151	
FBK_IE_ASR_09	0.4146	
RWTH_IE_ASR_primary_01	0.4128	
FBK_IE_ASR_04	0.4100	
FBK_IE_ASR_03	0.4099	
FBK_IE_ASR_08	0.4075	
FBK_IE_ASR_12	0.4074	
FBK_IE_ASR_07	0.4074	
FBK_IE_ASR_11	0.4045	
ATR_IE_ASR_05	0.3717	
ATR_IE_ASR_04	0.3665	
ATR_IE_ASR_primary_01	0.3550	
ATR_IE_ASR_02	0.3487	
ATR_IE_ASR_03	0.3349	
NTT_IE_ASR_primary_01	0.2868	
UEDIN_IE_ASR_primary_01	0.2662	
NTT_IE_ASR_02	0.2601	
NTT_IE_ASR_03	0.2552	
UW_IE_ASR_primary_01	0.2540	
MIT-	0.2500	
LL+AFRL_IE_ASR_primary_01		
INESCID_IE_ASR_01	0.2435	
INESCID_IE_ASR_primary_02	0.2416	
MIT-LL+AFRL_IE_ASR_02	0.2278	
RALI_IE_ASR_primary_01	0.2106	
RALI_IE_ASR_02	0.2055	
RALI_IE_ASR_04	0.1850	
ITI_UPV_IE_ASR_02	0.1822	
HKUST_IE_ASR_01	0.1702	
RALI_IE_ASR_03	0.0560	

AE ASR	
System	BLEU
UPC_AE_ASR_primary_01	0.4445
MIT-LL+AFRL_AE_ASR_primary_01	0.4429
MIT-LL+AFRL_AE_ASR_02	0.4293
UW AE ASR primary 01	0.4092
DCU_AE_ASR_primary_01	0.3942
UMD_AE_ASR_primary_01	0.3908
LIG_AE_ASR_primary_01	0.3804
CMU_AE_ASR_primary_02	0.3756
TUBITAK-UEKAE_AE_ASR_primary_01	0.3679
LIG_AE_ASR_secondary_01	0.3644
NTT_AE_ASR_primary_01	0.3626
NTT_AE_ASR_02	0.3037
NTT_AE_ASR_03	0.2813
HKUST_AE_ASR_01	0.1420

IF Closen		
System	BI FI	
FBK IE clean 02	0.4803	
TUDITAK LIEKAE IE alaan nrimary 01	0.4075	
CMULIKA JE clean primary_01	0.4041	
CMU-UKA_JE_clean_primary	0.4828	
FBK_JE_clean_primary_01	0.4789	
ATR_JE_CLEAN_primary_01	0.4745	
ATR_JE_CLEAN_03	0.4630	
ATR_JE_CLEAN_04	0.4559	
ATR_JE_CLEAN_02	0.4512	
NTT_JE_clean_02	0.4459	
NTT_JE_clean_primary_01	0.4365	
NTT_JE_clean_04	0.4337	
TOTTORI_JE_clean_02	0.4321	
TOTTORI_JE_clean_01	0.4321	
NTT_JE_clean_03	0.4205	
NTT_JE_clean_05	0.4192	
TOTTORI_JE_clean_04	0.4184	
TOTTORI_JE_clean_03	0.4184	
HKUST_JE_CLEAN_01	0.4051	
GREYC_JE_clean_primary_1	0.3964	
DCU_JE_CLEAN_primary_01	0.3959	
DCU_JE_CLEAN_04	0.3918	
DCU JE CLEAN 03	0.3898	

OF OL		
CE Clean		
System	BLEU	
I2R_CE_clean_primary_01	0.4077	
I2R_CE_clean_02	0.3942	
RWTH_CE_clean_04	0.3849	
RWTH_CE_clean_10	0.3791	
RWTH_CE_clean_08	0.3785	
ICT_CE_clean_Primary_01	0.3750	
CMUsamt_CE_CLEAN_primary_01	0.3744	
RWTH_CE_clean_09	0.3723	
RWTH_CE_clean_05	0.3718	
RWTH_CE_clean_primary_01	0.3708	
RWTH_CE_clean_12	0.3674	
RWTH_CE_clean_07	0.3655	
CASIA_CE_clean_primary_01	0.3648	
MIT-LL+AFRL_CE_clean_03	0.3634	
MIT-LL+AFRL_CE_clean_primary_01	0.3631	
MIT-LL+AFRL_CE_clean_02	0.3614	
CMUsamt_CE_CLEAN_02	0.3597	
ICT_CE_clean_02	0.3573	
FBK_CE_clean_05	0.3508	
RWTH_CE_clean_03	0.3473	
FBK_CE_clean_primary_01	0.3472	
HKUST_CE_clean_01	0.3426	
FBK_CE_clean_04	0.3421	
RWTH_CE_clean_02	0.3414	
FBK_CE_clean_02	0.3410	

JE ASR		
System	BLEU	
CMU-UKA_JE_ASR_primary	0.4386	
TUBITAK-UEKAE_JE_ASR_primary_01	0.4269	
ATR_JE_ASR_primary_01	0.4144	
ATR_JE_ASR_02	0.4106	
FBK_JE_ASR_04	0.3969	
FBK_JE_ASR_primary_01	0.3946	
ATR_JE_ASR_03	0.3931	
FBK_JE_ASR_02	0.3897	
FBK_JE_ASR_03	0.3848	
ATR_JE_ASR_04	0.3665	
NTT_JE_ASR_primary_01	0.3535	
NTT_JE_ASR_02	0.3533	
HKUST_JE_ASR_01	0.3249	
DCU_JE_ASR_03	0.3248	
DCU_JE_ASR_04	0.3231	
DCU_JE_ASR_02	0.3215	
DCU_JE_ASR_primary_01	0.3182	
NTT_JE_ASR_03	0.2945	

CE Clean (cont.)		
System	BLEU	
FBK_CE_clean_03	0.3394	
RWTH_CE_clean_14	0.3364	
RWTH_CE_clean_13	0.3298	
UMD_CE_clean_01	0.3211	
ATR_CE_CLEAN_02	0.3185	
ATR_CE_CLEAN_primary_01	0.3133	
ATR_CE_CLEAN_03	0.3124	
ATR_CE_CLEAN_04	0.3117	
RWTH_CE_clean_06	0.3081	
UPC_CE_clean_primary_01	0.2991	
ATR_CE_CLEAN_08	0.2937	
UPC_CE_clean_03	0.2920	
ATR_CE_CLEAN_07	0.2897	
XMU_CE_clean_primary_01	0.2888	
UPC_CE_clean_02	0.2885	
XMU_CE_clean_03	0.2879	
ATR_CE_CLEAN_05	0.2850	
ATR_CE_CLEAN_06	0.2832	
NTT_CE_clean_04	0.2807	
ICT_CE_clean_03	0.2802	
NTT_CE_clean_primary_00	0.2789	
NTT_CE_clean_03	0.2780	
XMU_CE_clean_02	0.2742	
NTT_CE_clean_05	0.2737	
DCU_CE_CLEAN_primary_01	0.2737	
DCU_CE_CLEAN_03	0.2701	
DCU_CE_CLEAN_02	0.2681	
NTT_CE_clean_02	0.2627	
NUDT_CE_clean_primary_01	0.1934	
ICT_CE_clean_04	0.1777	
NUDT CE clean 02	0.1758	

10. Appendix C: Unnormalized NIST adequacy/fluency scores

The following tables show unnormalized adequacy and fluency scores. The best scores are shown in bold.

Arabic English ASR NIST		
System	ADEQUACY	FLUENCY
MIT	3.10	3.24
UW	3.01	2.97
UPC	3.13	3.13

Chinese English Clean NIST		
System	ADEQUACY	FLUENCY
CMU	3.26	3.69
ICT	3.51	3.67
I2R	3.48	3.80

Italian English ASR NIST		
System	ADEQUACY	FLUENCY
ATR	3.62	3.27
RWTH	3.69	3.46
FBK	3.80	3.46

Japanese English ASR NIST		
System	ADEQUACY	FLUENCY
CMU-UKA	3.39	3.54
ATR	3.35	3.73
UEKAE	3.34	3.56