# FBK @ IWSLT 2007 

N. Bertoldi, M. Cettolo, R. Cattoni, M. Federico FBK - Fondazione B. Kessler, Trento, Italy

Trento, 15 October 2007

Cross-Language Information Processing

- system architecture
- confusion network
- punctuation insertion
- improvement of lexicon
- use of multiple lexicons and language models
- system evaluation


## Acknowledgments

- Hermes people: Marcello, Mauro, Roldano

- input from speech (word-graph or 1-best) or text
- pre and post processing (optional)
- use of the SRILM toolkit
- CN extraction: lattice-tool
- punctuation insertion: hidden-ngram
- case restoring: disambig
- Moses is a text/CN decoder
- rescoring of $N$-best translations (optional)

Step 1: take the ASR word lattice


- arcs are labeled with words and acoustic and LM scores
- arcs have start and end timestamps
- any path is a transcription hypothesis

Step 2: approximate the word lattice into a Confusion Network


- a CN is a linear word graph
- arcs are labeled with words or with the empty word ( $\epsilon$-word)
- arcs are weighted with word posterior probabilities
- paths are a superset of those in the word lattice
- paths can have different lengths
- algorithm proposed by [Mangu, 2000]
- exploit start and end timestamps of the lattice arcs
- collapse/cluster close words
- lattice-tool

Step 3: represent the CN as a table

| $\begin{gathered} \text { i. } 9 \\ \text { hi. } \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { cannot }_{.8} \\ \text { cann. }^{2} \\ \epsilon .1 \end{gathered}\right.$ | $\left\|\begin{array}{c} \epsilon_{.7} \\ \text { not.3 } \end{array}\right\|$ | say. 6 <br> said. <br> says. <br> $\epsilon .1$ | $\begin{gathered} \epsilon_{.7} \\ \text { any. } 3 \end{gathered}$ | anything. 8 <br> thing. 1 <br> things. 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |



Step 3: represent the CN as a table

| $\begin{gathered} \text { i. } 9 \\ \text { hi. }{ }_{1} \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { cannot }_{8} 8 \\ \text { can. } \\ \epsilon .1 \end{gathered}\right.$ | $\left\|\begin{array}{c} \epsilon .7 \\ \text { not.3 } \end{array}\right\|$ | say. 6 <br> said 2 <br> says. 1 <br> $\epsilon .1$ | $\begin{gathered} \epsilon_{.7} \\ \text { any. } 3 \end{gathered}$ | anything. 8 <br> thing. 1 <br> things. 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Notes

- text is a trivial CN
- CN can be used for representing ambiguity of the input
- transcription alternatives
- punctuation
- upper/lower case

Cross-Language Information Processing

## The Problem

- punctuation improves readability and comprehension of texts
- punctuation marks are important clues for the translation process
- most ASR systems generate output without punctuation irst


## The Problem

- punctuation improves readability and comprehension of texts
- punctuation marks are important clues for the translation process
- most ASR systems generate output without punctuation

Our approach [Cattoni, Interspeech 2007]

- insert punctuation as a pre-processing step
- exploit multiple hypotheses of punctuation
- use punctuated models (i.e. trained on texts with punctuation)
- let the decoder choose the best punctuation (and translation)

Step 1: take the input not-punctuated CN

Cing erparci

Step 2: extract the not-punctuated consensus decoding
i cannot say anything at this point are there any comments

Step 3: compute the $N$-best hypotheses of punctuation (with hidden-ngram)

| NBEST_0 | -15.270 | i cannot say anything | at this point | are there any comments |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NBEST_1 | -15.317 | i cannot say anything | at this point | are there any comments | ? |  |
| NBEST_2 | -16.275 | i cannot say anything | at this point | are there any comments | ? |  |
| NBEST_3 | -16.322 | i cannot say anything | at this point | ? | are there any comments | ? |
| NBEST_4 | -17.829 | i cannot say anything | at this point | are there any comments | ? |  |
| NBEST_5 | -18.284 | i cannot say anything | at this point | ? | are there any comments |  |
| NBEST_6 | -18.331 | i cannot say anything | at this point | are there any comments |  |  |
| NBEST_7 | -18.473 | i cannot say anything | at this point | are there any comments |  |  |
| NBEST_8 | -18.521 | i cannot say anything | at this point | are there any comments | ? |  |
| NBEST_9 | -18.834 | i cannot say anything | at this point | are there any comments | . |  |

Step 4: compute the punctuating $C N$ with posterior probs of multiple marks

Step 5: merge the input CN and the punctuating CN

$$
\begin{aligned}
& +
\end{aligned}
$$

Step 6: get the final punctuated $C N$

| $\begin{gathered} \text { i. } 9 \\ \text { hi. } 1 \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { cannot } .8 \\ \text { can. } \\ \epsilon .1 \end{gathered}\right.$ | $\begin{gathered} \epsilon .7 \\ \text { not. } 3 \end{gathered}$ | $\left\lvert\, \begin{gathered}\text { say. } 6 \\ \text { said. } 2 \\ \text { say. } \\ \epsilon .1\end{gathered}\right.$ | $\epsilon .7$ <br> any. 3 | anything. 8 <br> thing. 1 <br> things. 1 | $\epsilon .9$ <br> .1 | $\left\lvert\, \begin{gathered}\text { at. } 9 \\ \epsilon .1\end{gathered}\right.$ | this. 8 <br> these. 1 <br> those 1 | $\left\lvert\, \begin{gathered}\text { point. } 7 \\ \text { points.1 } \\ \epsilon .1 \\ \text { pint. } 1\end{gathered}\right.$ | $\because$ .7 $\epsilon .2$ $? .1$ | $\mathrm{are}_{1}$ | there. 8 the. 1 their. 1 | $\epsilon .8$ a. 1 air. 1 |  | comments. 7 comment. 2 commit. 1 | ? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Step 6: get the final punctuated $C N$

| $\begin{gathered} \text { i. } 9 \\ \text { hi. } .1 \end{gathered}$ | ```cannot.8 can.1 \epsilon.1``` | $\left\|\begin{array}{c} \epsilon .7 \\ \text { not. } 3 \end{array}\right\|$ | say. 6 <br> said. 2 <br> say. 1 <br> $\epsilon .1$ | $\begin{gathered} \epsilon .7 \\ \text { any } .3 \end{gathered}$ | anything. 8 <br> thing. 1 <br> things. 1 | $\epsilon .9$ .1 | at. 9 $\epsilon .1$ | this. 8 these. 1 those. 1 | $\begin{array}{\|c} \text { point. } 7 \\ \text { points. } 1 \\ \epsilon .1 \\ \text { pint } .1 \end{array}$ |  | $\mathrm{are}_{1}$ | there. 8 <br> the. 1 <br> their. 1 | $\begin{gathered} \epsilon .8 \\ \mathrm{a} .1 \\ \text { air. } 1 \end{gathered}$ | $\begin{gathered} \text { any. } 7 \\ \text { new. } 1 \\ \text { a. } 1 \\ \epsilon .1 \end{gathered}$ | comments. 7 comment. 2 commit. 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Notes

- this approach works with any speech input (1-best and CN) without punctuation and with partially punctuated input

Step 6: get the final punctuated $C N$

| $\begin{gathered} \text { i. } 9 \\ \text { hi. } .1 \end{gathered}$ | ```cannot.8 can.1 \epsilon.1``` | $\left\|\begin{array}{c} \epsilon .7 \\ \text { not. } 3 \end{array}\right\|$ | say. 6 <br> said. 2 <br> say. 1 <br> $\epsilon .1$ | $\begin{gathered} \epsilon .7 \\ \text { any } .3 \end{gathered}$ | anything. 8 <br> thing. 1 <br> things. 1 | $\epsilon .9$ .1 | at. 9 $\epsilon .1$ | this. 8 these. 1 those. 1 | $\begin{array}{\|c} \text { point. } 7 \\ \text { points. } 1 \\ \epsilon .1 \\ \text { pint } .1 \end{array}$ |  | $\mathrm{are}_{1}$ | there. 8 <br> the. 1 <br> their. 1 | $\begin{gathered} \epsilon .8 \\ \mathrm{a} .1 \\ \text { air. } 1 \end{gathered}$ | $\begin{gathered} \text { any. } 7 \\ \text { new. } 1 \\ \text { a. } 1 \\ \epsilon .1 \end{gathered}$ | comments. 7 comment. 2 commit. 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Notes

- this approach works with any speech input (1-best and CN) without punctuation and with partially punctuated input
- one system (with punctuated models) translates any input (text and speech)

Which is the better approach to add punctuation marks？

## Which is the better approach to add punctuation marks?

- in the source as a pre-processing step


## Which is the better approach to add punctuation marks?

- in the source as a pre-processing step
- in the target as a post-processing step
- translate with not-punctuated models
- add punctuation to the best translation (with hidden-ngram)


## Which is the better approach to add punctuation marks?

- in the source as a pre-processing step
- in the target as a post-processing step
- translate with not-punctuated models
- add punctuation to the best translation (with hidden-ngram)
- evaluation
- task: eval set 2006, TC-STAR English-to-Spanish
- training data: FTE transcriptions of EPPS (36Mw English, 38Mw Spanish)
- verbatim input (w/o punctuation), case-insensitive

| approach | BLEU | NIST | WER | PER |
| :--- | :---: | :---: | :---: | :---: |
| target | 42,23 | 9.72 | 46.12 | 34.38 |
| source | $\mathbf{4 4 . 9 2}$ | $\mathbf{9 . 8 4}$ | $\mathbf{4 2 . 8 4}$ | $\mathbf{3 1 . 7 7}$ |

Do multiple punctuation hypotheses help to improve translation quality?

Do multiple punctuation hypotheses help to improve translation quality?

- evaluation
- verbatim (w/o punctuation)
- case-insensitive

| input | type | \# punctuation hyps | BLEU | NIST | WER | PER |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| vrb | 1 | 44.92 | $\mathbf{9 . 8 4}$ | 42.84 | 31.77 |  |
|  | 1000 | $\mathbf{4 5 . 3 3}$ | 9.83 | $\mathbf{4 2 . 5 8}$ | $\mathbf{3 1 . 5 9}$ |  |

Do multiple punctuation hypotheses help to improve translation quality?

- evaluation
- verbatim (w/o punctuation), 1-best
- case-insensitive

| input | type | \# punctuation hyps | BLEU | NIST | WER | PER |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| vrb |  | 1 | 44.92 | $\mathbf{9 . 8 4}$ | 42.84 | 31.77 |
|  |  | 1000 | $\mathbf{4 5 . 3 3}$ | 9.83 | $\mathbf{4 2 . 5 8}$ | $\mathbf{3 1 . 5 9}$ |
| asr | 1-best | 1 | 35.62 | 8.37 | 57.15 | 44.56 |
|  |  | 1000 | $\mathbf{3 6 . 0 1}$ | $\mathbf{8 . 4 1}$ | $\mathbf{5 6 . 7 8}$ | $\mathbf{4 4 . 3 9}$ |

Do multiple punctuation hypotheses help to improve translation quality?

- evaluation
- verbatim (w/o punctuation), 1-best, and CN
- case-insensitive

| input | type | \# punctuation hyps | BLEU | NIST | WER | PER |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| vrb |  | 1 | 44.92 | $\mathbf{9 . 8 4}$ | 42.84 | 31.77 |
|  |  | 1000 | $\mathbf{4 5 . 3 3}$ | 9.83 | $\mathbf{4 2 . 5 8}$ | $\mathbf{3 1 . 5 9}$ |
| asr | 1-best | 1 | 35.62 | 8.37 | 57.15 | 44.56 |
|  |  | 1000 | $\mathbf{3 6 . 0 1}$ | $\mathbf{8 . 4 1}$ | $\mathbf{5 6 . 7 8}$ | $\mathbf{4 4 . 3 9}$ |
|  | CN | 1 | 36.22 | 8.46 | 56.39 | 44.37 |
|  |  | 1000 | 36.45 | $\mathbf{8 . 4 9}$ | 56.17 | $\mathbf{4 4 . 1 9}$ |

## Create a phrase-pair lexicon

- take a case-sensitive parallel corpus
- word-align the corpus in direct and inverse directions (GIZA++)
- combine both word-alignments in one symmetric way:
- grow-diag-final, union, and intersection
- extract phrase pairs from a symmetrized word-alignment
- add single word translation from direct alignment
- score phrase pairs according to word and phrase frequencies


## Create a phrase-pair lexicon

- take a case-sensitive parallel corpus
- word-align the corpus in direct and inverse directions (GIZA++)
- combine both word-alignments in one symmetric way:
- grow-diag-final, union, and intersection
- extract phrase pairs from a symmetrized word-alignment
- add single word translation from direct alignment
- score phrase pairs according to word and phrase frequencies

Ideas for improving the lexicon:

- use case-insensitive corpus for word-alignment, but case-sensitive extraction


## Create a phrase-pair lexicon

- take a case-sensitive parallel corpus
- word-align the corpus in direct and inverse directions (GIZA++)
- combine both word-alignments in one symmetric way:
- grow-diag-final, union, and intersection
- extract phrase pairs from a symmetrized word-alignment
- add single word translation from direct alignment
- score phrase pairs according to word and phrase frequencies

Ideas for improving the lexicon:

- use case-insensitive corpus for word-alignment, but case-sensitive extraction
- extract phrase pairs separately from more symmetrized word-alignments, concatenate them and compute their scores

How much improvement do we get?

## How much improvement do we get?

- evaluation
- task: IWSLT Chinese-to-English, 2006 eval set
- training data: BTEC and dev sets ('03-'05)
- weight optimization on 2006 dev set
- verbatim input, case-sensitive

| symmetrization | text for <br> word-alignment | \# phrase pairs | BLEU | NIST |
| :--- | :--- | :--- | :--- | :--- |
| grow-diag-final | case-sensitive | 496 K | 20.50 | 5.57 |

## How much improvement do we get?

- evaluation
- task: IWSLT Chinese-to-English, 2006 eval set
- training data: BTEC and dev sets ('03-'05)
- weight optimization on 2006 dev set
- verbatim input, case-sensitive

| symmetrization | text for <br> word-alignment | \# phrase pairs | BLEU | NIST |
| :--- | :--- | :--- | :--- | :--- |
| grow-diag-final | case-sensitive | 496 K | 20.50 | 5.57 |
| " | case-insensitive | 507 K | 21.86 | 5.59 |

## How much improvement do we get?

- evaluation
- task: IWSLT Chinese-to-English, 2006 eval set
- training data: BTEC and dev sets ('03-'05)
- weight optimization on 2006 dev set
- verbatim input, case-sensitive

| symmetrization | text for <br> word-alignment | \# phrase pairs | BLEU | NIST |
| :--- | :--- | :--- | :--- | :--- |
| grow-diag-final | case-sensitive | 496 K | 20.50 | 5.57 |
| " | case-insensitive | 507 K | 21.86 | 5.59 |
| +union | $"$ | 507 K | 22.35 | 6.20 |

## How much improvement do we get?

- evaluation
- task: IWSLT Chinese-to-English, 2006 eval set
- training data: BTEC and dev sets ('03-'05)
- weight optimization on 2006 dev set
- verbatim input, case-sensitive

| symmetrization | text for <br> word-alignment | $\#$ phrase pairs | BLEU | NIST |
| :--- | :--- | :--- | :--- | :--- |
| grow-diag-final | case-sensitive | 496 K | 20.50 | 5.57 |
| " | case-insensitive | 507 K | 21.86 | 5.59 |
| +union | $"$ | 507 K | 22.35 | 6.20 |
| +intersection | $"$ | 5.2 M | 22.71 | $\mathbf{6 . 3 1}$ |

- multiple training corpora
- non-homogeneous data (size, domain)
- small corpus for domain adaptation
- multiple training corpora
- non-homogeneous data (size, domain)
- small corpus for domain adaptation
- one TM and one LM
- concatenation of all corpora


- corpus characteristics are smoothed
- multiple TMs and multiple LMs
- advantages
* more specialized models, more flexibility
* easy combination/selection of models
* effective (for TMs)
- drawbacks
 * complexity of the model

How much improvement do we get?

## How much improvement do we get?

- evaluation
- task: IWSLT Italian-to-English, second half of 2007 dev set
- training data:
* baseline: BTEC, Named Entities, MultiWordNet and dev sets ('03-'06):
3.8 M phrase pairs, 362K 4-grams
* EU Proceedings (39M phrase pairs, 16M 4-grams)
* Google Web 1T (336M 5-grams)
- weight optimization on the first half of 2007 devset
- verbatim input repunctuated with CN, case-insensitive

| $\mathrm{TM}_{1}, \mathrm{LM}_{1}$ | $\mathrm{TM}_{2}, \mathrm{LM}_{2}$ | $\mathrm{LM}_{3}$ | OOV | BLEU | NIST |
| :---: | :---: | :---: | :---: | :---: | :---: |
| baseline | - | - | 1.68 | 28.70 | 5.76 |

## How much improvement do we get?

- evaluation
- task: IWSLT Italian-to-English, second half of 2007 dev set
- training data:
* baseline: BTEC, Named Entities, MultiWordNet and dev sets ('03-'06):
3.8 M phrase pairs, 362K 4-grams
* EU Proceedings (39M phrase pairs, 16M 4-grams)
* Google Web 1T (336M 5-grams)
- weight optimization on the first half of 2007 devset
- verbatim input repunctuated with CN, case-insensitive

| $\mathrm{TM}_{1}, \mathrm{LM}_{1}$ | $\mathrm{TM}_{2}, \mathrm{LM}_{2}$ | $\mathrm{LM}_{3}$ | OOV | BLEU | NIST |
| :---: | :---: | :---: | :---: | :---: | :---: |
| baseline | - | - | 1.68 | 28.70 | 5.76 |
| $"$ | - | web | $"$ | 29.66 | 5.83 |

## How much improvement do we get?

- evaluation
- task: IWSLT Italian-to-English, second half of 2007 dev set
- training data:
* baseline: BTEC, Named Entities, MultiWordNet and dev sets ('03-'06):
3.8 M phrase pairs, 362K 4-grams
* EU Proceedings (39M phrase pairs, 16M 4-grams)
* Google Web 1T (336M 5-grams)
- weight optimization on the first half of 2007 devset
- verbatim input repunctuated with CN, case-insensitive

| $\mathrm{TM}_{1}, \mathrm{LM}_{1}$ | $\mathrm{TM}_{2}, \mathrm{LM}_{2}$ | $\mathrm{LM}_{3}$ | OOV | BLEU | NIST |
| :---: | :---: | :---: | :---: | :---: | :---: |
| baseline | - | - | 1.68 | 28.70 | 5.76 |
| $"$ | - | web | $"$ | 29.66 | 5.83 |
| $"$ | EP | $"$ | $\mathbf{0 . 2 8}$ | $\mathbf{3 0 . 7 9}$ | $\mathbf{5 . 9 2}$ |

## Official Evaluation

## 1-best vs. Confusion Networks

| task | input | BLEU |
| :--- | :--- | :--- |
| IE, ASR | 1bst | 41.51 |
|  | cn | $42.29^{*}$ |
| * primary run |  |  |

- CN outperforms 1-best


## 1-best vs. Confusion Networks

| task | input | BLEU |
| :--- | :--- | :--- |
| IE, ASR | 1bst | 41.51 |
|  | cn | $42.29^{*}$ |
| JE, ASR | 1bst | $39.46^{*}$ |
|  | cn | 39.69 |
| * primary run |  |  |

- CN outperforms 1-best
- no inspection on CN for JE

Official Evaluation

## Multiple TMs and LMs

| task | TMs | LMs | BLEU |  |
| :--- | :---: | :---: | :--- | :---: |
| IE, clean | baseline | baseline | 43.41 |  |
|  | $+E P$ | + EP + web | $44.32^{*}$ |  |
| * primary run |  |  |  |  |

## Multiple TMs and LMs

| task | TMs | LMs | BLEU |
| :--- | :---: | :---: | :--- |
| IE, clean | baseline | baseline | 43.41 |
|  | + EP | + EP + web | $44.32^{*}$ |
| IE, ASR, CN | baseline | baseline | 40.74 |
|  | + EP | + EP + web | $41.51^{*}$ |
| * primary run |  |  |  |

## Multiple TMs and LMs

| task | TMs | LMs | BLEU |  |
| :--- | :---: | :---: | :--- | :---: |
| IE, clean | baseline | baseline | 43.41 |  |
|  | + EP | + EP + web | $44.32^{*}$ |  |
| IE, ASR, CN | baseline | baseline | 40.74 |  |
|  | + EP | + EP + web | $41.51^{*}$ |  |
| CE, clean | baseline | baseline | 35.08 |  |
|  | $"$ | + web | 33.94 |  |
|  | + LDC | $"$ | $34.72^{*}$ |  |
|  |  |  |  |  |

- additional TMs improves performance ( +0.77 BLEU )
- Google Web LM severely affects performance on CE (-1.14 BLEU)

Cross-Language Information Processing irst miximixikitigisu

- punctuation insertion in other languages (Chinese, Japanese)
- use of caseing CN to for case restoring

Cross-Language Information Processing

- punctuation insertion in other languages (Chinese, Japanese)
- use of caseing CN to for case restoring
- automatic way of selecting corpora i
- punctuation insertion in other languages (Chinese, Japanese)
- use of caseing CN to for case restoring
- automatic way of selecting corpora
- further inspection on the use of Google Web corpus

Cross-Language Information Processing

## Thank you!

## Chinese-to English

- word-alignment on ci texts, grow-diag-final + union + inter
- case sensitive models
- distortion models: distance-based and orientation-bidirectional-fe
- (stack size, translation option limit, reordering limit) $=(2000,50,7)$
- BTEC and dev sets ('03-'07) ( TM $_{1}: 5.9 \mathrm{M}$ phrase pairs, $\mathrm{LM}_{1}: 39 \mathrm{~K} 6$-grams)

LDC: ( $\mathrm{TM}_{2}$ : 27 M phrase pairs)
Google Web (LM ${ }_{2}$ : 336M 5-grams)

- 5 official runs


## Japanese-to English

- word-alignment on ci texts, grow-diag-final + union + inter
- case sensitive models
- distortion models: distance-based and orientation-bidirectional-fe
- (stack size, translation option limit, reordering limit $)=(2000,50,7)$
- BTEC and dev sets ('03-'07) (TM $: 9.1 \mathrm{M}$ phrase pairs, $\mathrm{LM}_{1}$ : 39 K 6 -grams)

Reuters: ( $\mathrm{TM}_{2}, 176 \mathrm{~K}$ phrase pairs)

- 6 official runs


## Italian-to English

- word-alignment on ci texts, grow-diag-final + union
- case insensitive TMs and LMs and case restoring
- distortion models: distance-based
- (stack size, translation option limit, reordering limit) $=(200,20,6)$
- BTEC NE, MWN, dev sets ('03-'07) (TM ${ }_{1}: 3.8 \mathrm{M}$ phrase pairs, $\mathrm{LM}_{1}: 362 \mathrm{~K} 4$-grams)

EU Proceedings: ( $\mathrm{TM}_{2}: 39 \mathrm{M}$ phrase pairs, $\mathrm{LM}_{2}: 16 \mathrm{M} 4$-grams) Google Web (LM ${ }_{3}$ : 336M 5-grams)

- rescoring with 5K-best translations
- case-restoring with a 4 -gram LM
- 12 official runs


## - Toolkit for SMT:

- translation of both text and CN inputs
- incremental pre-fetching of translation options
- handling multiple lexicons and LMs
- handling of huge LMs and LexMs (up to Giga words)
- on-demand and on-disk access to LMs and LexMs
- factored translation model (surface forms, lemma, POS, word classes, ...)
- Multi-stack DP-based decoder:
- theories stored according to the coverage size
- synchronous on the coverage size
- Beam search:
- deletion of less promising partial translations:
- histogram and threshold pruning
- Distortion limit: reduction of possible alignments
- Lexicon pruning: limit the amount of translation options per span
- log-linear statistical model
- features of the first pass
- (multiple) language models
- direct and inverted word- and phrase-based (multiple) lexicons
- word and phrase penalties
- reordering model: distance-based and lexicalized (CE, JE)
- (additional) features of the second pass (IE)
- direct and inverse IBM Model 1 lexicon scores
- weighted sum of $n$-grams relative frequencies $(n=1, \ldots 4)$ in $N$-best list
- the reciprocal of the rank
- counts of hypothesis duplicates
- $n$-gram posterior probabilities in $N$-best list [Zens, 2006]
- sentence length posterior probabilities [Zens, 2006]

