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GALE Rosetta Team

ROSETTA
TASKS and TEAM

Transcription
- IBM

- Brown
- CMU

- JHU

Translation

- IBM

- CMU

- JHU

- Stanford

- UMD

Distillation

- IBM        - CMU

- Pitt  - UMD  - Stanford 

LEE

- IBM    - CMU

Focus on A, C, E



GALE Rosetta Team

Goals  for ROSETTA System

� Ingest traditional and informal media: 
– broadcast news, talk shows, …
– Newswire, news web sites, blogs, …

� Scale to large volumes of multimodal/multilingual  inputs 
– Accurate, robust, quickly deployable engines, near real-time (up to 3x), 

24x7, …

� Start w/A rabic, C hinese, E nglish; scalable to 10’ s of languages

� Adaptive to user needs -- Personalized digests
– Robust, explainable, and controllable models of user and task
– Automatic generation of focused reports & graphics, …

� End2End system as living laboratory
– Continuous testing 



GALE Rosetta Team

ROSETTA TASKS: LEE
� Accelerate research  & speedup insertion

UIMA
– Common Annotation Structure (CAS) as input/output of 

multimodal processing engines/annotators/components
– Plug&Play: composition/integration of UIMAfied components

– Local/remote components with different OS’s
– Open source

Rosetta will create:
– Common Type System

– Common Repository for componentry

� MEMT: combine multiple MT engines



GALE Rosetta Team

ROSETTA TASKS (continued):
� Transcription

– Tightly integrated translation: small marginal erro r rate by 
combining speech-to-text and translation

– 3xRT or less runtime: fast, reliable, deployable sy stem using
common structure across languages and genres

� Translation

– Preserving meaning: who did what to whom

– Confidence measures: reducing human correction/edit ing

� Distillation

– End2End system: task based eval . of improved components

– Entity/relations networks, adaptive tracking, focus ed 
summarization, user modeling
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GNG (To Go or Not To Go:-) Evaluation

� Transcription and Translation (HTER)

– Human post edits system output

• Editor makes “minimum edits” of system output to reproduce correct meaning

• HTER: Human Translation Error Rate
• Control for human instruction across conditions/years – re-use fixed set of error 

full translations

– YEAR1: GNG edit distance

• Transcription: 65% accuracy
• Translation: 75% accuracy

– YEAR5: Both at 95%
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DISTILLATION Evaluations

� GO/NOGO

– Compare automatic system output to human

– YEAR1: machine 50% of human using chosen metric

� UTILITY

– Compare human output in a task using either baseline or 
GALE system

– Open spec -- showcase technology
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DISTILLATION GNG: Sample NL Question Schemata I

� LIST FACTS ABOUT EVENTS DESCRIBED AS FOLLOWS: z  

� WHAT [people/org/countries] ARE RELATED TO y:event A ND HOW? 

� PRODUCE A BIOGRAPHY OF [person]   

� PROVIDE INFORMATION ON [organization]  

� FIND STATEMENTS MADE BY OR ATTRIBUTED TO [person] O N [topic(s)] 

� DESCRIBE THE RELATIONSHIP OF [person/org] TO [perso n/org] 

� DESCRIBE [topic(s)] AND INVOLVEMENT OF [country]  

� DESCRIBE THE PROSECUTION OF [person] FOR [crime]

� HOW DID x:country REACT TO y:event?  

� WHAT CONNECTIONS ARE THERE BETWEEN [event 1/topic 1 ] and [event 
2/topic 2]?

Two types of questions: OPEN and SPECIFIC

OPEN:
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DISTILLATION GNG: Sample NL Question Schemata II

� FIND MUTUAL ACQUAINTANCES OF [person] AND [person]  

� TELL ME ABOUT [person's] MEETINGS ON [topic] 

� FIND PASSAGES ABOUT [attacks] BY/OR ATTRIBUTED TO [ group]  

� FIND PASSAGES ABOUT [attacks] {IN [location] DURING  [time interval]) 

� DESCRIBE OUTBREAKS OF [disease] (IN [region] IN [ti me period]} 

� IDENTIFY PERSONS ASSOCIATED WITH [organization] WHO  HAVE BEEN 
INDICTED ALONG WITH HOW THEY'RE RELATED

� IDENTIFY PERSONS ARRESTED FROM [organization] AND G IVE   THEIR 
NAME AND ROLE IN ORGANIZATION AND TIME AND LOCATION  OF   
ARREST 

� DESCRIBE ATTACKS in [location] DURING THE PAST  [du ration] GIVING 
LOCATION (AS SPECIFIC AS POSSIBLE), DATE, AND NUMBE R OF DEAD 
AND INJURED 

� WHERE HAS [person] BEEN AND WHEN?   

SPECIFIC:
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GALE Transcription & Translation GNG Evaluation

� Arabic and Chinese

– Speech
• Broadcast News (BN) 10kw
• Broadcast Conversation (BC) 10kw

– Text
• Newswire (NW) 10kw
• NewsGroup/WebLog (WL) 10kw

� 1 Gold Reference with some word/phrase alternations

� 3 Consortia participated in GALE06 Eval

– Agile (BBN)

– Nightingale (SRI)

– Rosetta (IBM)
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HTER

• Human editors post-edit MT output to get same 
meaning as reference translation

• HTER (Human Translation Error Rate)
– Count all the edit operations

– M is number of word or phrase shift movements

|| R

MSDI
HTER

+++=
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XIN_ARB_20060216.0141 HTER=4%
The French President to Visit India to Intensify Bi lateral Cooperation 0

New Delhi 16 February (Xinhua) said Naftyj Sarna, sp okesman for the 
Indian Foreign Ministry in New Delhi today, Thursda y, that the French 
President, Jacques Chirac will visit India on 19 an d 20 Of February 
$ordinal . 1

It is expected to be the signing of a number of agr eements and 
memoranda of understanding during the visit reflect sing the extent of the 
cooperation between India and France. 1

Such agreements include a declaration on the develo pment of nuclear 
energy for peaceful purposes, and on cooperation in  the field of defense, 
and a memorandum of understanding on cooperation in  the field of
tourism. 0

The two countries aim to intensify bilateral cooper ation in various fields, 
including their partnership in the political, econo mic, defense, space, and
civilian nuclear energy. 1

President Jacques Chirac will deliver a keynote spe ech on economic 
partnership between India and France. 0

President Chirac is accompanied in the visit by his  wife Bernadette Chirac, 
and the ministers of foreign affairs, defense, econ omy, finance, industry, 
foreign trade, tourism as well as some 30 senior ma nagers of major 
French companies. 0
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XIN_ARB_20060212.0073 HTER=15.3% BLEU=.25
The Economic Offer: for Environment- friendly Cars in the Chinese     
Market/First and Last Addition/ HTER=0%
He pointed out that the two official tests on the A l-Hajeen, which 
indicates the start of mass production of environme nt-friendly in 
China. HTER=26%
He added a senior official of the Ministry of Scien ce and Techno logy 
that China has achieved remarkable progress in deve loping the ca rs 
will increase local production without doubt their competitiveness 
in the global market. HTER=15%

The Economic Offer: for Environment-friendly Cars i n the Chinese 
Market/First and Last Addition/  
Wan pointed out that the two hybrid bus types passe d official te sts, 
which indicates the start of mass production of env ironment-
friendly buses in China.   
A senior official of the Ministry of Science and Te chnology added 
that China has achieved remarkable progress in deve loping the ca rs 
and local production without doubt will increase th eir 
competitiveness in the global market.
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NW TEXT

5.55.3Rosetta

5.75.8Nightingale

5.75.0Agile

BLEUTERSTD. ERR.

Doc=302wd

BN AUDIO

4.54.2Rosetta

4.56.6Nightingale

4.94.5Agile

BLEUTERSTD. ERR.

Doc=770wd

Can we predict document HTER from document BLEU/TER ?

Doc BLEU= 0.25 => Doc HTER= 16.5%+/- SE

To be 95% confident of passing a GNG threshold one needs 
100 docs (for a stderr of 0.5% in HTER) around that level:   

==> need DEV SETS of 1000 docs per condition
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Can we predict document HTER from document Post Edi ting @IBM?

RosettaNightingaleAgile
Post

Editing

19.19%20.18%21.01%LDC HTER

32.91%32.94%34.02%IBM HTER

58%59%62%R2

5.9%5.0%5.9%
STD

ERR

+65%

Subset of Arabic NW: 18 docs Post-Edited @ IBM

- Similar results for Chinese



The 2006 Rosetta Transcription Effort
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Net Rosetta Progress This Year

12.6%13.5%June

21.7%23.2%December

42%

Mandarin 
(RT04 Test set)

42%Improvement

Arabic       
(RT04 Test set)
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Where did the improvement come from?

Arabic Mandarin

LDC GALE Y1 DATA: 50 hours, 
AM; 200 hrs. LM

TDT-4 Lightly supervised DataUnsupervised Data: 750 hrs

LDC Y1 Data: 450 hours

Algorithmic
design Algorithmic

design
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Transcription Flow Charts

* Numbers on subset of BNAT and BCAD

Segmentation Unvowelized
Decoding (SA)

Vowelized 
Decoding (SA++)

Adaptive LM 
Rescoring

15.3% wer, bnat 13.7% 13.4%  

Arabic:

CNCSegmentation
CMU

CMU Self-Adapted
Decoding

IBM X-Adapted
Decoding 

JHU Rescored 
Lattice

IBM Rescored 
Lattice18.4% cer 14.8%

14.0%

13.9%

13.7%

* Numbers on subset of LDC2006E10 and dev05bcm  

Mandarin:



T.J. Watson Research Center, Human Language Technologies

What happened between Sep’05 and July’06 ?

� And the improvements come from …
� LDC data : 1.2%
� Unsupervised Training : 1.3%
� Vowelization : 2.0%
� Big Vocabulary : 1.5%
� Cross-Adaptation Unvowelized-Vowelized : 1.0%



T.J. Watson Research Center, Human Language Technologies

Pronunciation Probabilities

� Vowelized Setup : 617k vocabulary, 2m pronunciations
� Forced alignment on training data (incl. unsupervised BN-03)

16.4%

17.3%

BNAT-05

14.9%

16.0%

RT-04

25.1%

26.0%

BCAD-05

yes

no

Pron. Prob.

� Developed technology to cope with 2 million pronunciations
� Significant improvements from pronunciation probabilities



T.J. Watson Research Center, Human Language Technologies

Vowelization and Broadcast Conversations ..

� ML models : VTLN, FMLLR, MLLR

16.4%

18.7%

BNAT-05

25.1%14.9%Vowelized

17.0%

RT-04

25.4%Unvowelized

BCAD-05

� Significant improvements on Broadcast News, but not on Broadcast
Conversations ! -> Need to investigate:
- Dialect issue?
- BC training data with vowelized transcripts?
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Evaluation Results

37.1

24.1

20.7

35.6

34.0

21.5

BC

32.4- HTER

13.4- Test

12.9Mandarin  - Dev

29.2- HTER

24.4- Test

13.7Arabic       - Dev

BN

Really big mismatch
between dev & test

Some mismatch
between dev & test

We hit the target!
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One Key Lesson: Need wider variety of training data

0
5

10
15
20
25
30
35
40
45
50

WER

BNAT05

Eval - Aljazeera

Eval - LBC
News
Eval - LBC
Nahar

Very little training data for LBC – poor results on test set. 
In the future we would like to have at least 10h of speech from each source.



Predicting the WER on New 
Test Sets



T.J. Watson Research Center, Human Language Technologies

GALE PI meeting, NY, 2006

Motivation

� Rapidly assess the performance of an ASR system on a new 
test set without the need of a reference transcript

� Creating an accurate reference is a time-consuming process
• Expertise may not be readily available (e.g. foreign languages)

• Have to rely on other insitutions to provide reference (e.g. NIST)

� Applications
• Predict system performance in government evaluations ☺

• Select data for (un)supervised training (active learning)

• Change system configuration to minimize predicted WER



T.J. Watson Research Center, Human Language Technologies

GALE PI meeting, NY, 2006

How can we compute WERA’ ?

0

A

B

WERAB

W
ER

A

WERB

A’

B’

WERA’B’

Training: all WERs known           Test: only WERA’B’ known



T.J. Watson Research Center, Human Language Technologies

GALE PI meeting, NY, 2006

How can we compute WERA’ ?

0
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B

WERAB

W
ER
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0

A’

B’

WERA’B’

W
ER

A’

WERB’

Training: all WERs known           Test: only WERA’B’ known



T.J. Watson Research Center, Human Language Technologies

GALE PI meeting, NY, 2006

Performance on the 2006 GALE evaluation data



T.J. Watson Research Center, Human Language Technologies

GALE PI meeting, NY, 2006

Performance on the 2006 GALE evaluation data



T.J. Watson Research Center, Human Language Technologies

GALE PI meeting, NY, 2006

True WER=29.2%, predicted WER=30.0%, CORR=0.87, MAD=5.4

Performance on the 2006 GALE evaluation data



Rosetta:
MT GALE GnG06 Report 



A Direct Translation Model II
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How many phrases do we need?

committee
of the commission

commission

of the committee

the committee

of the commission on

the commission

committee of

central

the central

of the central
of central

and the central

and central

, central

‘s central

lljnp Almrkzyp

of the central committee (11)
of the central committee of (11)

the central committee of (8)

central committee (7)

committee central (2)

� N-M blocks (Used by most SMT systems)

– General

• All possible blocks extracted
• 40-50M blocks in Arabic 
• Sparsity problems
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DTM Decoder (aka MaxEnt)

� Block style
– Allow variables in target sequences
– 1-M blocks
• Part of a minimalist system 
• Typical size 1.6M blocks 

� Utilizing English, Arabic analysis
– Segmentation, POS
– POS

� Feature functions on streams of information

� Framework for parameter estimation

l# ljn +p

of the VAR committee

PREP  NN  NSUFF_FEM

...
...

IN  DT  -1  NN

lljnp ���� of the VAR committee

Almrkzyp ���� central
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Direct Translation Model
� Joint future:  Jump, Target Sequence

– j=jump, which is the number of positions from the previously 
translated source word position

– Integrates Distortion and Word-selection model

� Features

– Lexical:  
• Left and Right context of source sequences
• Questions about the left context of a target sequence

– Part-of-speech, Segmentation

� Features shared across phrase blocks

– Feature parameters trained to maximize log-likelihood 
• No direct optimization of any translation quality m etric 

(BLEU, TER)

� Details in an upcoming paper

( , | )p T j S
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Features

� MaxEnt Block Example
33 0.0876793 0.0274136 |  llHzb | of the VAR_1 party | 0 0 -1 0  ||  l# l# Hzb

� Block Internal: Seg Features

� Block Context Feature

– 11 1.66021 0.0330579 1024 -1 party llHzb || communist Al$ywEy chinese AlSyny

� New Feature ~ coding time + 8 hours training + 1 hr  decode time

SegTgtJumpAlphaCnt

l#of21.2257009

l#of11.31955461

l#of-10.9893120

l#of-21.0471107
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Experiments - NIST

48.21

MT-05

520,210

# of feats 
(MT05)

MT-06

(NIST)

Feature Types

MaxEnt Decoder 

Lexical Feats

49.241,551,582+Lexical Context

49.06 36.92Block Decoder

49.513,063,023+Segmentation Feats

49.873,370,901+Part-of-Speech Feats 

49.98 38.613,412,210+Distortion Feats



UIMA: ARCHITECTURE FOR DARPA GALE

� Highly-distributed plug-and-play architecture
� Support for multi-modal sources
� Support for local/remote heterogenous components
� Open Source

UIMA
LEE

News, Talk 
Shows, Blogs

Audio ...

Indices

DBs

KBs

Component
Repository

Common
Type System

TranslationTranscription

Distillation



UIMA’s Basic Building Blocks are Annotators. They iterate over an 
artifact to discover new types based on existing ones and  update the 
Common Analysis Structure (CAS) for upstream processing.

Fred is theCenter CEO of

OrganizationPerson

CeoOf

Arg2:OrgArg1:Person

PPVPNPParser

Named Entity

Relationship

Center Micros

CAS



Common Annotation Structure (CAS):
Multiple Subject of Analysis (SOFA) in CAS 
Supports Multi-Modal Analysis

� Multiple views of an artifact can each support independent sets 
of attributes

� Focus can changes from audio to text to both
� Attributes directed to one or more SOFAs
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A common platform for development, composition and 
deployment of multi-modal analytics into different carriers.
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Process Flow:  Serial
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IOD Enables On-Line MEMT, Increased Accuracy
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•GNG Arabic 
speech test set 
(34 of 37 audio 
files)
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GNG Results vs. IOD

� Research systems ~50% better than product engines

� Case-sensitive GNG vs. case-insensitive IOD

� ���� Significant work to productize
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TALES: Multimodal Trans-lingual Analytics
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- Speech-to-text

- Statistical machine translation

- Cross-lingual search

Satellite Broadcast
- Arabic TV
- Chinese TV

Internet 

Data available as quickly as acquired
- 5 min delay on video content
- 15 min delay on web pages
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TALES Foreign Broadcast Video Monitoring and 
Search System

� UIMA-based trans-
lingual search 
technology:
– Speech-to-Text
– Machine Translation 

(English, Arabic, 
Chinese)

– Advanced Text 
Analysis (language 
identification and 
translation, named 
entity extraction and 
translation)

– Cross-lingual 
Information 
Retrieval

Translated Speech

English Query

Arabic Video in 
pop-up player

Arabic Text

English Translation




