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Abstract

We describe a machine translation approach being de-
signed at HKUST to integrate semantic processing into
statistical machine translation, beginning with entity and
word sense disambiguation. We show how integrat-
ing the semantic modules consistently improves trans-
lation quality across several data sets. We report results
on five different IWSLT 2006 speech translation tasks,
representing HKUST’s first participation in the IWSLT
spoken language translation evaluation campaign. We
translated both read and spontaneous speech transcrip-
tions from Chinese to English, achieving reasonable per-
formance despite the fact that our system is essentially
text-based and therefore not designed and tuned to tackle
the challenges of speech translation. We also find that
the system achieves reasonable results on a wide range
of languages, by evaluating on read speech transcrip-
tions from Arabic, Italian, and Japanese into English.

1. Introduction

The role and usefulness of semantic processing for Sta-
tistical Machine Translation (SMT) has recently been
much debated. In previous work, we reported surpris-
ingly disappointing results when using the predictions
of a Senseval word sense disambiguation (WSD) sys-
tem in conjunction with SMT using an IBM-style model
(Carpuat and Wu, 2005b). Nevertheless, error analysis
leaves little doubt that the performance of SMT systems
still suffers from inaccurate lexical choice. Other em-
pirical studies have shown that SMT systems perform
much more poorly than dedicated WSD models, both
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tract HR0011-06-C-0023, and by the Hong Kong Research Grants
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DAG03/04.EG09.

supervised and unsupervised, on Senseval WSD tasks
(Carpuat and Wu, 2005a)—also suggesting that WSD
still has a role to play in improving SMT.

In this paper, we describe ongoing work on an ap-
proach being designed at HKUST to investigate the ef-
fect of semantic handling on current SMT models, us-
ing dedicated word sense and entity disambiguation mod-
ules. In particular, we propose a new architecture for
integrating WSD into SMT architectures, and show that
this additional semantic handling consistently improves
translation quality across several data sets.

We then turn to the IWSLT 2006 tasks, describ-
ing the experimental set-up and evaluation results. This
represents a first participation by HKUST in the IWSLT
spoken language translation evaluation campaign. For
this first participation, we focused on building a base-
line system for Chinese to English translation that could
be easily ported to different language pairs. We there-
fore chose to translate additional input languages from
different language families. We submitted translations
of read and spontaneous speech in the Chinese to Eng-
lish task, as well as read speech translations from Ara-
bic, Italian and Japanese into English. Despite the fact
that the system is essentially text-based, and therefore
is not designed and tuned to tackle the challenges of
speech translation, the system achieves reasonable per-
formance, yielding a BLEU score of 15.45 and a ME-
TEOR score of 44.56 for Chinese to English translation,
our main language pair of interest. Results on other lan-
guage pairs suggest that the system can achieve reason-
able results with little modification.

2. Machine translation engine

The core MT engine as used in the experiments here is
an off-the-shelf phrase-based statistical machine trans-
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lation model. This is a useful engine since the approach
has been shown to achieve competitive translation qual-
ity and is commonly used. Many state-of-the-art sys-
tems employ phrase-based approaches (e.g., Zens et al.
(2005), Koehn et al. (2005), Sadat et al. (2005)). All
phrase-based models make use of a phrasal bilexicon,
but essentially differ in the bilexicon extraction and pa-
rameter estimation strategies, and the phrase reordering
method.

2.1. Decoder

For the experiments here, we used the Pharaoh decoder
(Koehn, 2004), which implements a heuristic beam search
for phrase based translation. While the phrase reorder-
ing model used in Pharaoh is weaker than in other pro-
posed models, Pharaoh was chosen for the advantages
of being freely available and widely used, and therefore
constitutes an appropriate point of reference.

2.2. Phrasal bilexicon

The core phrasal bilexicon is derived from the intersec-
tion of bidirectional IBM Model 4 alignments, obtained
with GIZA++ (Och and Ney, 2002). The intersection is
augmented using growing heuristics proposed by Och
and Ney (2002) in order to improve recall. Follow-
ing Koehn (2003), each entry in the phrasal bilexicon
is scored using phrase translation conditional probabil-
ities for both translation directions, as well as lexical
weights which combine word translation probabilities
according to the word alignment observed within the
phrase pair during training.

2.3. Language model

The language model is a standard trigram model with
Kneser-Ney smoothing trained using the SRI language
modeling toolkit (Stolcke, 2002).

3. Word sense disambiguation for translation
lexical choice

We now present a new architecture integrating a state-
of-the-art WSD model into phrase-based SMT, and show
that WSD produces small but consistent gains across
several test sets.

3.1. WSD classifiers

The model consists of an ensemble of four voting mod-
els combined by majority vote.

The first voting model is a naı̈ve Bayes model, since
Yarowsky and Florian (2002) found this model to be
the most accurate classifier in a comparative study on a
subset of Senseval-2 English lexical sample data.

The second voting model is a maximum entropy
model (Jaynes, 1979), since Klein and Manning (2002)
found that this model yielded higher accuracy than naı̈ve
Bayes in a subsequent comparison of WSD performance.

The third voting model is a boosting model (Freund
and Schapire, 1997), since has consistently turned in
very competitive scores on related tasks such as named
entity classification, as described in Section 4.1.1. We
also use the Adaboost.MH algorithm for WSD, just like
for NER.

The fourth voting model is a model based on Ker-
nel PCA (Wu et al., 2004). Kernel Principal Compo-
nent Analysis (KPCA) is a nonlinear kernel method for
extracting nonlinear principal components from vector
sets where, conceptually, the n-dimensional input vec-
tors are nonlinearly mapped from their original space Rn

to a high-dimensional feature space F where linear PCA
is performed, yielding a transform by which the input
vectors can be mapped nonlinearly to a new set of vec-
tors (Schölkopf et al., 1998). WSD can be performed by
a Nearest Neighbor Classifier in the high-dimensional
KPCA feature space. We have showed that KPCA-
based WSD models achieve close accuracies to the best
individual WSD models, while having a significantly
different bias (Carpuat et al., 2004).

All these classifiers have the ability to handle large
numbers of sparse features, many of which may be ir-
relevant. Moreover, the maximum entropy and boosting
models are known to be well suited to handling features
that are highly interdependent.

3.2. WSD features

The WSD classifier employs much richer features than
IBM-style statistical MT systems. The feature set con-
sists of position-sensitive, syntactic, and local colloca-
tional features, since these features yielded the best re-
sults when combined in a naı̈ve Bayes model on several
Senseval-2 lexical sample tasks (Yarowsky and Florian,
2002).

All these WSD models were extensively evaluated
on a wide range of monolingual and multilingual lexi-
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Table 1: Evaluation results: integrating the WSD trans-
lation predictions improves BLEU and NIST scores
across 4 different Chinese-English test sets.

Test Set Experiment BLEU NIST
DevTest 1 Baseline 40.76 7.9388

+ WSD for SMT 41.28 7.9814
DevTest 2 Baseline 39.81 8.1533

+ WSD for SMT 39.85 8.1753
DevTest 3 Baseline 49.26 9.1172

+ WSD for SMT 49.81 9.1522
DevTest 4 Baseline 16.13 5.7258

+ WSD for SMT 16.27 5.7569

Table 2: Translation examples with and without WSD
for SMT

Example 1
Input ©���ÜU}��
Ref. May I see the menu ?
Baseline Let me see the menu ?
+ WSD May I see the menu ?

Example 2
Input ý���§M�Ù���
Ref. Would you show me to my seat ?
Baseline Can you change my seat finger for me ?
+ WSD Can you direct me to my seat ?

cal sample disambiguation tasks both on Senseval-2 and
Senseval-3 data (e.g., Carpuat et al. (2004), Wu et al.
(2004), Su et al. (2004)).

3.3. Repurposing the WSD models for SMT

Table 1 shows that our method of integrating a state-of-
the-art WSD model into phrase-based SMT produces
small but consistent gains across all Chinese-English
development test sets. The main difference between
this approach and our earlier experiments (Carpuat and
Wu, 2005b) lies in the fact that we focus on repurposing
the WSD system for SMT. Rather than using a generic
Senseval WSD model, both the WSD training and the
WSD predictions are integrated into the SMT frame-
work. Specifically:

• Instead of using a Senseval system, we redefine
the WSD task to be as close as possible to the
translation disambiguation task faced by the SMT
system.

• Instead of using predefined senses drawn from

manually constructed sense inventories such as
HowNet (Dong, 1998), our WSD for SMT sys-
tem directly disambiguates between all transla-
tion candidates seen during SMT training.

• Instead of learning from manually annotated train-
ing data, our WSD system is trained on the same
corpora as the SMT system.

Thus, in a given SMT input sentence, for every word
that was seen in the training data, we have a WSD model
and a context-dependent distribution over the possible
translation candidates of the word. This distribution is
used to augment the baseline bilexicon. With Pharaoh,
we use the provided XML markup scheme to specifiy
translation candidates and their corresponding proba-
bilities. At decoding time, these externally generated
translation candidates are considered as if they were ad-
ditional bilexicon entries, and are used to build transla-
tion hypotheses that compete with other translation hy-
potheses build from within the traditional SMT phrasal
translation lexicon.

Analysis shows that the WSD translation probabil-
ities give better rankings and are more discriminative
than the baseline translation probabilities, yielding im-
proved translations as can be seen in Table 2.

4. Named-entity translation

Recognizing, disambiguating, and translating entities is
a special case of word sense disambiguation for transla-
tion lexical choice, where the words or phrases in ques-
tion are entities of various sorts. Translating names cor-
rectly is particularly important to translation quality and
usefulness, but does present some distinct challenges
from regular phrase translation. First, the vast major-
ity of names are rare and often never seen in training,
and, with the exception of names of well-known per-
sons or other entities, are typically not recorded in lexi-
cons. Second, whether a phrase is a named-entity (NE)
depends on context and is therefore ambiguous. Third,
names have specific translation patterns. For instance,
the translation of a person name usually cannot be in-
ferred from the translation of each of its components.

The first step in handling NE translation consists in
identifying NE boundaries and their type. In this sys-
tem, we are focusing on identifying the PERSON, LO-
CATION and ORGANIZATION entity types. For the
purpose of translation, identifying NE boundaries is not
sufficient, since the type of a NE affects the translation
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Table 3: IWSLT-06 Training data statistics computed for the 4 language pairs
Training Data Statistics Chinese-English Arabic-English Italian-English Japanese-English
Number of bisentences 39953 19972 19972 39953
Vocabulary size (input lang) 11178 25152 17917 12535
Vocabulary size (English) 18992 13337 13337 18992

patterns: for instance, many location and person names
can typically be transliterated, while some components
of organization names should be translated with a stan-
dard bilexicon instead.

After identifying NE boundaries and types, a rule-
based translation approach based on name gazetteers
and transliteration schemes is used to obtain one or more
translations for each identified NE.

The decoder integrates the NE translation candidates
as additional translation candidates for the NE phrase,
using the Pharaoh XML markup scheme for translation
input, as for the integration of the WSD predictions.

4.1. Identifying named entities

The named-entity recognition (NER) system is based
on a multilingual NER system initially developped for
several European languages, and subsequently adapted
to Chinese.

4.1.1. NER classifiers

As NER can be framed as a classification task, we use
an ensemble of three relatively high performing ma-
chine learning classifiers:

Boosting: The main idea behind boosting algorithms
is that a set of many weak classifiers can be effectively
combined to yield a single strong classifier. Each weak
classifier is trained sequentially, increasingly focusing
more heavily on the instances that the previous clas-
sifiers found difficult to classify. Our system uses Ad-
aBoost.MH (Freund and Schapire, 1997), an n-ary clas-
sification variant of the original binary AdaBoost algo-
rithm. As demonstrated by Wu et al. (2002) and Car-
reras et al. (2002), boosting can be used to build lan-
guage independent NER models that perform excep-
tionally well.

Support Vector Machines: Support Vector Ma-
chines (SVMs) have gained a considerable following
in recent years (Boser et al., 1992). Sassano and Ut-
suro (2000) and McNamee and Mayfield (2002) have
demonstrated that SVMs show promise when applied to
named entity recognition, though performance appears

quite sensitive to parameter choices.
Transformation-based learning: Transformation-

based learning (TBL) is a rule-based machine learning
algorithm that was first introduced by Brill (1995) and
used for part-of-speech tagging. The central idea of
transformation-based learning is to learn an ordered list
of rules which progressively improve upon the current
state of the training set. An initial assignment is made
based on simple statistics, and then rules are greedily
learned to correct the mistakes, until no net improve-
ment can be made. Our system uses the fnTBL toolkit
(Ngai and Florian, 2001), which implements several op-
timizations in rule learning to drastically speed up the
time needed for training.

4.1.2. NER features

We use a set of primary features which can be easily
obtained across languages, and require little linguistic
analysis.

For European languages, features are defined as fol-
lows:

• Lexical (words and lemmas) and syntactic (part-
of-speech) information within a window of 2 words
surrounding the current word

• Prefixes and suffixes of up to a length of 4 char-
acters from the current word

• Capitalization: whether the word starts with a
capital letter and/or the entire word is capitalized

• A small set of conjunctions of POS tags and words
within a window of 2 words of the current word

• Previous history: the chunk tags (gold standard
during training; assigned for evaluation) of the
previous two words.

• Gazetteer features: whether the current word is
within a NE occuring in a given gazetteer.

For Chinese, the feature set must be adapted to tackle
several additional challenges. First, unlike European
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Table 4: IWSLT-06 Evaluation test data statistics computed for the correct speech transcriptions (text) and the read
speech transcriptions (read)

Test Data Statistics Chinese-English Arabic-English Italian-English Japanese-English
Number of sentences 500 500 500 500
Vocabulary size (text) 1328 1950 1467 1330
Vocabulary size (read) 1361 1890 1552 1383
unknown words (text) 150 727 399 154
unknown words (read) 124 763 340 105

languages, Chinese lacks capitalization information which
plays a very important role in identifying named enti-
ties. Second, there is no space between words in Chi-
nese, so ambiguous segmentation interacts with NER
decisions. Consequently, segmentation errors will af-
fect the NER performance, and vice versa. Third, unlike
European languages, Chinese allows an open vocabu-
lary for proper names of persons, eliminating another
major source of explicit clues used by European lan-
guage NER models. Based on these observations, we
use character-level features instead of word-level fea-
tures; this prevents committing to a given word segmen-
tation, which might be incorrect at NE boundaries.

Several versions of this NER system were exten-
sively evaluated on NER shared tasks for Chinese at
SIGHAN 2006 (Yu et al., 2006) and for several Euro-
pean languages at CoNLL 2002 (Wu et al., 2002) and
2003 (Wu et al., 2003).

5. IWSLT experimental set-up and results

5.1. Data description

Training and evaluation data are drawn from the multi-
lingual Basic Travel Expression Corpus (BTEC*), which
contains relatively short sentences used in simple con-
versations in the travel domain, and their translations in
several languages.

We participated in the open track of the evaluation
campaign, where we were allowed to use only the BTEC*
data given for each translation task, plus any other ex-
ternal resources. The training and evaluation data statis-
tics are given in Table 3 and 4 respectively. The Chinese-
English and Japanese-English tasks were provided with
twice as many training bisentences as the Arabic-English
and Italian-English tasks. Taking advantage of the fact
that BTEC* is a multilingual parallel corpus, all train-
ing sets share the same English side. Similarly, the eval-
uation test sets are composed of Arabic, Chinese, Italian
and Japanese sentences that can all translate to the same

English sentence.
All training data was clean text, representing a mis-

match to the test data used in the evaluation, which was
noisy output from automatic speech recognition. In ad-
dition to recognition errors, automatic speech transcrip-
tions do not contain punctuation, and use digits to repre-
sent numbers. Performance could be improved by elim-
inating the mismatch between training and test data.

For each Chinese sentence, we are given correct
speech transcriptions as well as automatic read speech
transcriptions and automatic spontaneous speech tran-
scriptions. For the other languages, we only translated
the correct and the read speech transcriptions. For this
first IWSLT participation, we did not take advantage of
the availability of n-best lists, and only made use of the
1-best transcription, as if the input were text.

5.2. Language-specific data preprocessing

For all language pairs, sentence pairs containing multi-
ple segments are split and re-aligned to provide cleaner
parallel training data. After this common processing
step, each language followed a minimal language-specific
tokenization scheme.

English: The English was simply tokenized and
case-normalized in the same manner for all languages.

Chinese: The Chinese side of the parallel corpora
was word segmented using the LDC segmenter.

Arabic: In contrast with the 4 other languages con-
sidered, Arabic is a morphologically rich language and
requires more sophisticated processing. The Arabic text
is first converted to the Buckwalter romanization scheme.
Tokenization and lemmatization are performed using
the ASVMT Arabic morphological analysis toolkit (Diab,
2005). An Arabic word is typically formed of a stem,
and possibly affixes and clitics. Affixes are inflectional
markers for tense, gender and/or number, while the cli-
tics include some prepositions, conjunctions, determin-
ers, etc. Tokenization, which consists of separating those
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Table 5: Evaluation results on the Chinese-English translation task, on correct speech transcriptions (text), read speech
transcriptions (read) and spontaneous speech (transcriptions)

Evaluation
Metric

HKUST
Result
(text)

Result Range
(text)

HKUST
Result
(read)

Result Range
(read)

HKUST Result
(spontaneous)

Result Range
(spontaneous)

BLEU 18.04 12.84-24.23 15.45 10.37-21.11 14.41 03.44-18.98
NIST 5.3615 4.0658-6.4004 4.7769 3.6384-5.5858 4.6365 2.7374-5.1513
METEOR 49.15 41.64-51.82 44.56 37.29-45.96 42.38 31.78-41.98
WER 68.99 74.42-65.06 71.16 77.64-69.10 71.87 87.12-70.60
PER 54.87 58.21-49.80 58.20 61.62-54.73 59.11 74.30-57.05

Table 6: Examples of Chinese translations for different input conditions: correct speech transcription (text), read
speech transcription (read), and spontaneous speech transcription (spontaneous).

Example 1
Input (text): ïå÷�`(å,�0@��e}�
Output: Could you please write down the address in Japan, please.
Input (read): ïå÷î¨(å,�0@��e}�
Output: Could you please write down the address in Japan, please.
Input (spontaneous): ïå÷��Ùº�0@��}�
Output: May handle, deal with the address of the please.

Example 2
Input (text): `Z
A¹åMÅ{{°
Output: You must check in by ten o’clock in the evening.
Input (read): ¨©?A¹åMÅ{{°
Output: You must check in at ten before.
Input (spontaneous): ¨Z
A¹åMÅ{{°
Output: You must check in by ten o’clock in the evening.

syntactic units, is the first step of processing in ASVMT.
This is followed by lemmatization which, in ASVMT,
refers to a normalization step where the tokens coming
from stems that were modified when agglutinated are
converted back to their original form.

Italian: We preprocessed the Italian corpus just like
the English corpus: it was simply tokenized, using the
same rules as for English, and case-normalized. This
is obviously not optimal, as Italian presents more mor-
phological inflexions than English, as suggested by the
larger vocabulary size on the Italian side of the training
data than on the English side (Table 3).

Japanese: We used the provided word segmenta-
tion and did not perform any additional processing.

5.3. Chinese-English task

Table 5 shows the evaluation of translation quality for
the Chinese-English translation task, using the most com-

mon automatic evaluation metrics: BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), METEOR (Baner-
jee and Lavie, 2005), as well as word error rate (WER)
and position-independent word error rate (PER) (Till-
mann et al., 1997). The HKUST system achieves rea-
sonable performance, with evaluation scores situated in
the middle range, compared to all systems evaluated on
the open track.

As expected, translation quality degrades for all eval-
uation metrics when moving from correct transcriptions
to read and spontaneous speech. Table 6 shows how dif-
ferences in the accuracy of speech transcription affects
the final translation quality. In the first example, the
spontaneous speech transcription contains a sequence
of four incorrect characters (“�� Ù º” instead of
the correct “�`(å,”), which makes the transla-
tion meaningless. In contrast, the read speech transla-
tion contains only one error: the speech recognizer con-
fuses the more formal word “¨” with the correct word
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Table 7: Evaluation results on the Arabic, Italian and Japanese translation tasks, for both correct speech transcriptions
(text), and read speech trancriptions (read).

Evaluation
Metric

Arabic
(text)

Arabic
(read)

Italian
(text)

Italian
(read)

Japanese
(text)

Japanese
(read)

BLEU 16.63 14.77 29.64 23.74 15.60 15.23
NIST 3.8863 3.3318 7.1816 6.0956 0.1560 0.1523
METEOR 42.88 39.20 62.39 54.03 45.79 42.83
WER 67.57 69.16 58.08 63.07 72.48 72.39
PER 56.47 59.48 43.40 49.38 57.86 58.18

Table 8: Translations of test sentences from Arabic (ar),
Chinese (zh), Italian (it) and Japanese (jp) into English

Input Translation
Ref. It is about twenty kilometers away from here.
ar On in about twenty kilometers from here.
zh About twenty kilometers from here.
it It’s about twenty kilometers far from here.
jp About two - kilometers from here.

Ref. This wine is from France. It’s very famous.
ar This wine from France and is very popular.
zh This is very famous French made wine.
it This wine comes from France is very popu-

lar.
jp This is ’s very famous.

Ref. Yes. We also have blue, red, yellow and pink.
ar Yes, we have a red and my.
zh Do you have any blue red yellow and pink.
it Yes, we have red yellow blue and pink.
jp Yes, we have red green yellow pink.

“`”. However, they both translate to the same English
word (“you”) yielding an acceptable sentence transla-
tion despite the speech recognizer error. The second set
of sentences gives an example of a less common case,
where the spontaneous speech translation is better than
the read speech translation. The read speech transcrip-
tion wrongly recognizes the word “Z
” (“evening”)
as “©?”, which is meaningless and cannot be trans-
lated.

5.4. Other language pairs

Translation results for the other language pairs are re-
ported in Table 7. Despite the smaller amount of train-
ing data available, translating from Italian yields the

best performance, since Italian is closer to English than
the three other input languages considered.

Table 8 shows sentence translations obtained for all
the input languages for a common reference translation.
In these examples, the translation from Italian is usu-
ally the best of the four, as shown by the evaluation
scores. Japanese translations seem to be the hardest for
the system, with many input words that are not or in-
correctly translated, despite a phrasal bilexicon learned
on twice as much data as the Italian phrasal bilexicon.
In Chinese, the phrasal lexicon coverage seems better
on these sentences, but our phrase-based model fails to
accurately capture differences in syntax: in the third ex-
ample, the Chinese system translates most words cor-
rectly but fails to correctly disambiguate the use of the
Chinese verb in assertion vs. interrogation.

6. Conclusion

We have described the design of an approach at HKUST
to integrating semantic processing into statistical ma-
chine translation, with specific modules for word sense
and entity disambiguation and translation, and showed
how repurposing the semantic analysis modules for the
translation task yields improvements in translation qual-
ity. We discussed results obtained on four different lan-
guages in the IWSLT 2006 speech translation tasks, in
HKUST’s first participation in the IWSLT evaluation
campaign. On the Chinese to English translation task,
the system achieved reasonable performance as mea-
sured by a set of automatic evaluation metrics. We also
reported results on the Arabic, Italian and Japanese read
speech translation tasks, showing that the system is eas-
ily portable to other language pairs.
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