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What is sampling-based multilingual alignment?

A sub-sentential alignment method

anymalign.py
Freely available, open source, easy to use, portable, pythonic J

Extract lexical equivalences from sentence-aligned parallel corpora:

Multiword: extract translations of (dis)contiguous sequences of words
Multilingual: can process any number of languages at a time

“Anytime”: quality is not a matter of time.
Coverage is a matter of time.

Simple: very simple
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What is sampling-based multilingual alignment?

An example-based sub-sentential alignment method

Alignments detection:
based on strict distribution similarities of words
on a multilingual parallel corpus

Alignments extraction:
based on string differences

Alignments scoring:
straightforward statistics
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What is sampling-based multilingual alignment?

An example (1/3: strict distribution similarities)

Input: a subcorpus obtained by sampling the initial training corpus

1 One; coffee; ,1 please; .1 Uny caféy 5 s'ily vousy plaity .o
2 | Thisy coffee; isy excellent; .1 Cep caféy n'esty pasy mauvaisy .o
3 One; strongy teay .1 Uny thé; forty .o
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Cep One; Thisy Uny café; coffee; excellent; forty is; mauvaisy n'esty pas) plaity please; s'ilp strongy teaj thés vous)

1212

11110 1 o0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1
2100111 0 1 0 1 1 1 0 1 1 1 1 0 0 0 o0 0 0 o0
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What is sampling-based multilingual alignment?

An example (2/3: string differences)

The words: | appear on lines: from which we extract:

1 coffee; café,

, One; _,1 please; .1 Uny _ 2 s'ila vous; plaits .2
coffee; café, >
5 coffee; café;

This; _ is1 excellent; .1 Cey _ n'est, pasz mauvais; .2
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What is sampling-based multilingual alignment?

An example (2/3: string differences)

The words: | appear on lines: from which we extract:

1 coffee; café,

, One; _,1 please; .1 Uny _ 2 s'ila vous; plaits .2
coffee; café, >
5 coffee; café;

This; _ is1 excellent; .1 Cey _ n'est, pasz mauvais; .2

English French Count
coffee > café 2
One _, please . < Un _, s'il vous plait . 1
This _ is excellent . «» Ce _ n'est pas mauvais . 1
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What is sampling-based multilingual alignment?

An example (3/3: score alignments)

» The same process is repeated for numerous random subcorpora.
» All alignments from all subcorpora are collected.

» Translation probabilities are computed based on alignments’ counts.

Result:
A full-fledged translation table. }
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What is sampling-based multilingual alignment?

An example (3/3: score alignments)

» The same process is repeated for numerous random subcorpora.
» All alignments from all subcorpora are collected.

» Translation probabilities are computed based on alignments’ counts.

Result:
A full-fledged translation table. }

or not?
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Some typical results on two typical tasks

Some typical results on two typical tasks
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Some typical results on two typical tasks

Two typical tasks

1. A machine translation task
2. A bilingual lexicon induction task J

We compare the outputs of two word aligners:
1. Anymalign
2. MGIZA++, augmented by Moses for symmetric alignment
and phrase extraction and scoring

We use two bilingual parallel corpora of different natures:

1. 40,000 pairs of Japanese-English sentences from the BTEC
(average sentence length: 10 words)

2. 200,000 pairs of French-English sentences from the Europarl corpus
(average sentence length: 31 words)
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Some typical results on two typical tasks

Evaluation 1: a machine translation task

Using the Moses phrase-based SMT decoder

BTEC: short Japanese-English sentences

Phrase table origin | BLEU TER
Anymalign 0.39 0.45
MGIZA++/Moses | 0.38 0.45

Europarl: long French-English sentences

Phrase table origin | BLEU TER
Anymalign 0.25 0.60
MGIZA++/Moses | 0.29 0.56
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Some typical results on two typical tasks

Evaluation 2: a bilingual lexicon induction task (1/3)

» We compare the phrase tables to a reference bilingual lexicon.

» The reference bilingual lexicon is filtered so that
it contains only translation pairs that can actually be obtained
from the training parallel corpus.

» We compute precision, recall, and f-measure.
Translation pairs from the phrase tables are weighted
according to their source-to-target translation probabilities.
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Some typical results on two typical tasks

Evaluation 2: a bilingual lexicon induction task (2/3)
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Some typical results on two typical tasks

Evaluation 2: a bilingual lexicon induction task (3/3)

Europarl: fr-en
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Some typical results on two typical tasks

Conclusion of the two experiments

Anymalign typically yields equal or worse results
on phrase-based machine translation tasks

_l’_

Anymalign typically yields equal or better results
on bilingual lexicon induction tasks,
involving mainly unigrams
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Some typical results on two typical tasks

Conclusion of the two experiments

Anymalign typically yields equal or worse results
on phrase-based machine translation tasks

_l’_

Anymalign typically yields equal or better results
on bilingual lexicon induction tasks,
involving mainly unigrams

Aren't we just aligning unigrams, and missing longer n-grams? J
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What is in the phrase tables?

What is in the phrase tables?
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What is in the phrase tables?

Investigating the contents of alignments: settings

We now resort to 1,000,000 pairs of French-English sentences
from the Europarl corpus.

» We obtained the worst results on this corpus
in the previous experiments.

> A large training corpus will highlight differences
between the two phrase tables.
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What is in the phrase tables?

Investigating phrase table coverage
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What is in the phrase tables?

Less data is worse data

Anymalign’s phrase table is 42 times smaller than MGIZA++/Moses'!

» Anymalign is much better at unigram extraction.

» Anymalign is much much much worse at n-gram extraction (n > 2).

=- Quantity, not quality!
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What is in the phrase tables?

Failing at aligning n-grams?

Manual inspection of the content of phrase tables suggests that
Anymalign would not align sequences of words with different frequencies.

= We plot the distribution of bigrams
according to the frequency of the words they are made of.
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What is in the phrase tables?

Investigating bigrams distribution
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What is in the phrase tables?

Investigating bigrams distribution
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What is in the phrase tables?

But why?

Basics of the method:

Extract sequences of words that share exactly the same distribution
in a subcorpus.

Words with very different frequencies never share the same distribution,
whatever the subcorpus!
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2lac? avy;
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What is in the phrase tables?

But why?

Basics of the method:

Extract sequences of words that share exactly the same distribution
in a subcorpus.

Words with very different frequencies never share the same distribution,
whatever the subcorpus!

From this corpus: we can extract: but we cannot extract:
l1|ab? af; b B b? «B; J
2lac? avy; (R
3 d? §;
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What is missing?

What is missing?
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What is missing?

What remains to be done

Recombine alignments together in order to produce longer alignments:

Alignments known
b B New alignment

? b? < B;
ab? - af;

~ extract phrase alignments consistent with word alignments
~ phrase extraction for phrase-based SMT
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Conclusion

» An example-based sub-sentential alignment method

» Better results on lexicon induction tasks than on MT tasks
= better at unigram extraction

» Does not align together words with different frequencies

» We would just need to recombine word alignments together
in order to produce longer alignments

anymalign.py
http://users.info.unicaen.fr/~alardill/anymalign/ J

Adrien Lardilleux (GREYC;"‘) An investigation in sampling-based multilingual alignment EBMT3 24 / 24


http://users.info.unicaen.fr/~alardill/anymalign/

Conclusion

» An example-based sub-sentential alignment method

» Better results on lexicon induction tasks than on MT tasks
= better at unigram extraction

» Does not align together words with different frequencies

» We would just need to recombine word alignments together
in order to produce longer alignments

anymalign.py
http://users.info.unicaen.fr/~alardill/anymalign/ J

Thank you!
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