

Lexicons or phrase tables? An investigation in sampling-based multilingual alignment

Adrien Lardilleux^{*} Jonathan Chevelu^{†*} Yves Lepage^{*} Ghislain Putois[†] Julien Gosme^{*}

*GREYC, Université de Caen Basse-Normandie [†]Orange Labs, Lannion France

12th November 2009

An investigation in sampling-based multilingual alignment EBMT3 1 / 24

Some typical results on two typical tasks

What is in the phrase tables?

What is missing?

An investigation in sampling-based multilingual alignment EBMT3 2 / 24

A sub-sentential alignment method

anymalign.py

Freely available, open source, easy to use, portable, pythonic

Extract lexical equivalences from sentence-aligned parallel corpora:

Multiword: extract translations of (dis)contiguous sequences of words Multilingual: can process any number of languages at a time "Anytime": quality is not a matter of time. Coverage is a matter of time. Simple: very simple

An example-based sub-sentential alignment method

Alignments detection:

based on strict distribution similarities of words on a multilingual parallel corpus

Alignments extraction:

based on string differences

Alignments scoring:

straightforward statistics

An example (1/3: strict distribution similarities)

Input: a subcorpus obtained by sampling the initial training corpus

One₁ coffee₁, 1 please₁. 1 Un₂ café₂, 2 s'il₂ vous₂ plaît₂. 2
 This₁ coffee₁ is₁ excellent₁. 1 Ce₂ café₂ n'est₂ pas₂ mauvais₂. 2
 One₁ strong₁ tea₁. 1 Un₂ thé₂ fort₂. 2

An example (1/3: strict distribution similarities)

Input: a subcorpus obtained by sampling the initial training corpus

1	$One_1 coffee_1$, 1 please 1 . 1 $Un_2 cafe_2$, 2 s'il 2 vous 2 plaît 2 . 2
2	This ₁ coffee ₁ is ₁ excellent ₁ \cdot_1 Ce ₂ café ₂ n'est ₂ pas ₂ mauvais ₂ \cdot_2
3	One_1 strong $_1$ tea $_1$. $_1$ Un_2 thé $_2$ fort $_2$. $_2$

												7	<i>Y</i>									
1	, ₁ ,	2 ·	1 • 2	Ce ₂	One_1	$This_1$	Un ₂	$café_2$	coffee ₁	$excellent_1$	fort ₂	is ₁	mauvais ₂	n'est ₂	pas ₂	plaît ₂	$please_1$	s'il ₂	strong ₁	tea ₁	thé ₂	vous ₂
1	1	1 1	ι1	0	1	0	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0	1
2	0	0 1	ι1	1	0	1	0	1	1	1	0	1	1	1	1	0	0	0	0	0	0	0
3	0	0 1	ι1	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0

Ш

An example (1/3: strict distribution similarities)

Input: a subcorpus obtained by sampling the initial training corpus

One₁ coffee₁, 1 please₁. 1 Un₂ café₂, 2 s'il₂ vous₂ plaît₂. 2
 This₁ coffee₁ is₁ excellent₁. 1 Ce₂ café₂ n'est₂ pas₂ mauvais₂. 2
 One₁ strong₁ tea₁. 1 Un₂ thé₂ fort₂. 2

∜

	,1	,2	·1	·2	Ce ₂	One_1	$This_1$	Un ₂	$café_2$	coffee ₁	$excellent_1$	fort ₂	is_1	mauvais ₂	n'est ₂	pas ₂	plaît ₂	$please_1$	s'il ₂	$strong_1$	tea ₁	thé ₂ v	vous ₂
1	1	1	1	1	0	1	0	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0	1
2	0	0	1	1	1	0	1	0	1	1	1	0	1	1	1	1	0	0	0	0	0	0	0
3	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0

₩

	·1 ·2	cafe	i_2 coffee ₁	One1	Un_2	,1	, ₂ plaît	2 please1	$s'il_2$	vous ₂	Ce ₂	$This_1$	$excellent_1$	is_1	$mauvais_2$	n'est ₂	pas_2	fort ₂	strong ₁	tea_1	thé ₂
1	1 1	1	1	1	1	1	1 1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
2	1 1	1	1	0	0	0	0 0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
3	1 1	0	0	1	1	0	0 0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Adrien Lardilleux (GREYC

EBMT3 5 / 24

An example (2/3: string differences)

The words:	appear on lines:	from which we extract:
coffoo, cofó	1	coffee1 café2 One1 _ ,1 please1 .1 Un2 _ ,2 s'il2 vous2 plaît2 .2
conee ₁ care ₂	2	coffee ₁ café ₂ This ₁ $_$ is ₁ excellent ₁ 1 Ce ₂ $_$ n'est ₂ pas ₂ mauvais ₂ 2
:		

An example (2/3: string differences)

The words:	appear on lines:	from which we extract:					
coffee, cofé	1	coffee1 café2 One1 _ ,1 please1 .1 Un2 _ ,2 s'il2 vous2 plaît2 .2					
conee ₁ care ₂	2	$\begin{array}{l} coffee_1 \ cafe_2 \\ This_1 \ _ \ is_1 \ excellent_1 \1 \ Ce_2 \ _ \ n'est_2 \ pas_2 \ mauvais_2 \end{array}$					
÷	:						
		\downarrow					

English		French	Count
coffee	\leftrightarrow	café	2
One $_$, please .	\leftrightarrow	Un $_$, s'il vous plaît .	1
This $_$ is excellent .	\leftrightarrow	Ce $_$ n'est pas mauvais .	1
		:	:

An example (3/3: score alignments)

- > The same process is repeated for numerous random subcorpora.
- All alignments from all subcorpora are collected.
- Translation probabilities are computed based on alignments' counts.

Result:

A full-fledged translation table.

An example (3/3: score alignments)

- > The same process is repeated for numerous random subcorpora.
- All alignments from all subcorpora are collected.
- Translation probabilities are computed based on alignments' counts.

Result:

A full-fledged translation table.

... or not?

An investigation in sampling-based multilingual alignment EBMT3 7 / 24

What is sampling-based multilingual alignment?

Some typical results on two typical tasks

What is in the phrase tables?

What is missing?

Adrien Lardilleux (GREYC

An investigation in sampling-based multilingual alignment EBMT3 8 / 24

Two typical tasks

- 1. A machine translation task
- 2. A bilingual lexicon induction task

We compare the outputs of two word aligners:

- 1. Anymalign
- 2. MGIZA++, augmented by Moses for symmetric alignment and phrase extraction and scoring

We use two bilingual parallel corpora of different natures:

- 1. 40,000 pairs of Japanese-English sentences from the BTEC (average sentence length: 10 words)
- 2. 200,000 pairs of French-English sentences from the Europarl corpus (average sentence length: 31 words)

Evaluation 1: a machine translation task

Using the Moses phrase-based SMT decoder

BTEC: short Japanese-English sentences

Phrase table origin	BLEU	TER
Anymalign	0.39	0.45
$MGIZA{++}/Moses$	0.38	0.45

Europarl: long French-English sentences

Phrase table origin	BLEU	TER
Anymalign	0.25	0.60
$MGIZA{++}/Moses$	0.29	0.56

Evaluation 2: a bilingual lexicon induction task (1/3)

- ▶ We compare the phrase tables to a reference bilingual lexicon.
- The reference bilingual lexicon is filtered so that it contains only translation pairs that can actually be obtained from the training parallel corpus.
- We compute precision, recall, and f-measure. Translation pairs from the phrase tables are weighted according to their source-to-target translation probabilities.

Evaluation 2: a bilingual lexicon induction task (2/3)

Evaluation 2: a bilingual lexicon induction task (3/3)

Conclusion of the two experiments

Anymalign typically yields equal or worse results on phrase-based machine translation tasks

Anymalign typically yields equal or better results on bilingual lexicon induction tasks, involving mainly unigrams

An investigation in sampling-based multilingual alignment EBMT3 14 / 24

Conclusion of the two experiments

Anymalign typically yields equal or worse results on phrase-based machine translation tasks

Anymalign typically yields equal or better results on bilingual lexicon induction tasks, involving mainly unigrams

Aren't we just aligning unigrams, and missing longer n-grams?

Adrien Lardilleux (GREYC

What is sampling-based multilingual alignment?

Some typical results on two typical tasks

What is in the phrase tables?

What is missing?

Adrien Lardilleux (GREYC

An investigation in sampling-based multilingual alignment EBMT3 15 / 24

Investigating the contents of alignments: settings

We now resort to 1,000,000 pairs of French-English sentences from the Europarl corpus.

- We obtained the worst results on this corpus in the previous experiments.
- A large training corpus will highlight differences between the two phrase tables.

Investigating phrase table coverage

Less data is worse data

Anymalign's phrase table is 42 times smaller than MGIZA++/Moses'!

- Anymalign is much better at unigram extraction.
- Anymalign is much much worse at n-gram extraction (n \geq 2).

\Rightarrow Quantity, not quality!

An investigation in sampling-based multilingual alignment EBMT3 18 / 24

Failing at aligning n-grams?

Manual inspection of the content of phrase tables suggests that Anymalign would not align sequences of words with different frequencies.

 \Rightarrow We plot the distribution of bigrams according to the frequency of the words they are made of.

An investigation in sampling-based multilingual alignment EBMT3 19 / 24

Investigating bigrams distribution

Adrien Lardilleux (GREYC

An investigation in sampling-based multilingual alignment

Investigating bigrams distribution

600 $\overline{\diamond}$ 500 400 300 200 100 0 10^{6} 10^{4}

Adrien Lardilleux (GREYC

An investigation in sampling-based multilingual alignment

But why?

Basics of the method:

Extract sequences of words that share exactly the same distribution in a subcorpus.

Words with very different frequencies never share the same distribution, whatever the subcorpus!

But why?

Basics of the method:

Extract sequences of words that share exactly the same distribution in a subcorpus.

Words with very different frequencies never share the same distribution, whatever the subcorpus!

```
From this corpus:

1 | a b ? \alpha \beta;

2 | a c ? \alpha \gamma;

3 | d ? \delta;
```

But why?

Basics of the method:

Extract sequences of words that share exactly the same distribution in a subcorpus.

Words with very different frequencies never share the same distribution, whatever the subcorpus!

Fror	n this c	orpus:	we can extract:
1	ab?	αβ;	$b \leftrightarrow \beta$
2	ac?	αγ;	$? \leftrightarrow ;$
3	d ?	δ;] :

But why?

Basics of the method:

Extract sequences of words that share exactly the same distribution in a subcorpus.

Words with very different frequencies never share the same distribution, whatever the subcorpus!

Fror	n this c	orpus:
1	ab?	αβ;
2	ac?	αγ;
3	d ?	δ;

we can extract:

$$b \leftrightarrow \beta$$

but we cannot extract:
$$b \ ? \ \leftrightarrow \beta \ ;$$

Some typical results on two typical tasks

What is in the phrase tables?

What is missing?

What is missing?

What remains to be done

Recombine alignments together in order to produce longer alignments:

 \simeq extract phrase alignments consistent with word alignments \simeq phrase extraction for phrase-based SMT

Conclusion

- An example-based sub-sentential alignment method
- Better results on lexicon induction tasks than on MT tasks
 ⇒ better at unigram extraction
- Does not align together words with different frequencies
- We would just need to recombine word alignments together in order to produce longer alignments

anymalign.py

http://users.info.unicaen.fr/~alardill/anymalign/

Conclusion

- An example-based sub-sentential alignment method
- Better results on lexicon induction tasks than on MT tasks
 ⇒ better at unigram extraction
- Does not align together words with different frequencies
- We would just need to recombine word alignments together in order to produce longer alignments

anymalign.py

http://users.info.unicaen.fr/~alardill/anymalign/

Thank you!