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After providing a brief introduction to the transliteration problem, and highlighting 
some issues specific to Arabic to English translation, a three phase algorithm is 
introduced as a computational solution to the problem. The algorithm is based on a 
Hidden Markov Model approach, but also leverages information available in on-line 
databases.  The algorithm is then evaluated, and shown to achieve accuracy approaching 
80%.  
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1. INTRODUCTION 
Transliteration is the practice of transcribing a word or text written in one writing 
system into another writing system. Technically, from a linguistic point of view, it is a 
mapping between writing systems. Person names, locations and organizations as well as 
imported words are the most frequent candidates for transliteration. Obviously, 
transliteration across languages having the same orthography is trivial; however, the 
task becomes more challenging when the language pair uses different orthographies 
(e.g. Chinese and English).  

The problem of transliteration from Arabic to languages using other alphabets is a 
source of much misunderstanding. As mentioned in (Al-Onaizan and Knight, 2002), two 
types of transliteration exist, forward transliteration and backward transliteration. 

Forward Transliteration is the transliteration of a foreign name (in the case of our 
proposed study, Arabic) into English. Typically, there are several acceptable 
transliteration candidates. For example, the Arabic name “محمد” (mhmd in Buckwalter 
encoding [http://www.qamus.org/transliteration.htm]) might correctly be transliterated 
into Mohamed, Mohammed, Mohammad, etc. In fact, the many types of name variation 
commonly found in databases can be expected.  A recent web search on Google for texts 
about “Muammar Qaddafi” (spelled in Arabic as معمر القدافي mEmr AlqdAfy in 
Buckwalter encoding), for example, turned up thousands of relevant pages under the 
spellings Qathafi, Kaddafi, Qadafi, Gadafi, Gaddafi, Kathafi, Kadhafi, Qadhafi, 
Qazzafi, Kazafi, Qaddafy,Qadafy, Quadhaffi, Gadhdhafi, al-Qaddafi, Al-Qaddafi, and 
Al Qaddafi (and these are only a few of the variants of this name known to occur). 
Another search revealed a total of 87 different — and official — spellings in English for 
Muammar Qaddafi Libya's Strongman (the preferred spelling). 

Backward Transliteration is the reverse transliteration process used to obtain the 
original form of an English name that has already been transliterated into the foreign 
language. In this case, only one transliteration is retained. 

Any transliteration system for Arabic has to make a number of decisions, 
dependent on its intended field of application. The most well known applications in the 
field of natural language processing are Machine Translation (MT) and Cross-Lingual 
Information Retrieval (CLIR). Considering the gigantic number of proper nouns, it is 
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essential to have a transliteration module in such systems. As in machine translation, a 
perfect transliteration system not only should be a language-independent module but it 
should take into account the peculiarities of the source and the target languages. Both 
Arabic and English lack some of each other’s sounds and letters. For example, there is 
no perfect match for “ع” in English and “P” in Arabic. This leads to ambiguities in the 
process of transliteration. Another problem associated with Arabic is the omission of 
diacritics and vowels (fatha, damma, kasra, shaddah, sukuun) in almost all the Arabic 
writings. The information contained in unvocalized Arabic writing is not sufficient to 
give a reader, who is unfamiliar with the language, sufficient information for accurate 
pronunciation.  If encountered with a new name, the omission of diacritics even might 
confuse native speakers. Diacritics are considered to be one of the main causes of 
ambiguity when dealing with Arabic proper nouns. 

 

2. RELATED WORK 
There have been different approaches to transliteration dependent on the application. 

Stalls and Knight (1998) present an Arabic-to-English back-transliteration 
system based on the source-channel framework. The transliteration process is based on a 
generative model of how an English name is transliterated into English. This model has 
three components P(w), P(e|w) and P(a|e). P(w) is a typical unigram model that 
generates English word sequences according to their unigram probabilities. A given 
English word sequence w is converted to its corresponding phoneme sequence e with 
probability P(e|w). Finally, an English phoneme sequence e is converted into an Arabic 
letter sequence according to the probability P(a|e). This system has limitations when it 
comes to those names with unknown pronunciations in the dictionary. Al-Onaizan and 
Knight (2002) propose a spelling-based model instead of a phonetic-based one. This 
model directly maps English letter sequences into Arabic letter sequences with a 
probability P(a|w). They evaluate the phonetic- and spelling-based model separately and 
then combine them reporting that the spelling-based model outperforms the phonetic-
based model and in some cases the hybrid model. 

In the context of Named Entity (NE) recognition, Samy et al. (2005) use parallel 
corpora in Spanish and Arabic and an NE tagger in Spanish to tag the names in the 
Arabic corpus. For each sentence pair aligned together, they use a simple mapping 
scheme to transliterate all the words in the Arabic sentence and return those matching 
with NEs in the Spanish sentence as the NEs in Arabic. While they report high precision 
and recall, it should be noted that their approach is applicable only when a parallel 
corpus is available. 

Sproat et al. (2006) use comparable corpora with tagged named entities in both 
Chinese and English languages. They use two different approaches to find the 
transliteration. Firstly, they have a pronunciation-based module customized for Chinese 
to English using both statistical training and hand-written rules. Secondly, they use the 
frequency of named entity occurrences based on the timeline in the parallel corpora to 
guess the equivalents. Both (Samy et al, 2005) and (Sproat et al, 2006) have systems 
that require a corpus in the target language containing the correct transliteration. 
Klementiev and Roth (2006) report a quite similar approach to the one described in 
(Sproat et al, 2006). 
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3. EXPERIMENTAL DATA 
In order to obtain the language model and translation probabilities, we need a list of 
name pairs, i.e. names written in Arabic and correctly transliterated into English. We did 
not have the advantage of a linguist to prepare such list; instead the annotated Arabic 
Treebank 3 from LDC corpora was used to extract named entities. By parsing the 
corpus, 2167 pairs were prepared for the experiments. However, not all of the pairs were 
ideal input for the next phase’s training. Some names (especially ancient names and 
locations) were translated rather than transliterated. For example, “Egypt” in Arabic is 
written as مصر (mSr in the Buckwalter encoding) and pronounced as “MESR” which is 
completely misleading. Also, there were some mistakes in choosing the equivalents in 
the Treebank. For example, بحرين (bHryn in Buckwalter encoding) is the name of a 
country in the south of Iran while its English equivalent in the Arabic Treebank was 
Caspian which is a Lake in the north of Iran. These cases are not frequent but 
considering the limited training data, this affects the system dramatically. 

An automated technique, explained in the next section, was used to deal with the 
issues mentioned above, and filter out the unwanted pairs. After filtering, the remaining 
list was reduced to 2085 pairs. 

4. ALGORITHM 
The proposed algorithm consists of three phases. As the omission of diacritics in Arabic 
is problematic, we decided to address this problem in a separate phase. The idea is first 
to guess the best English equivalents of visible Arabic characters (which for the most 
part are consonants and long vowels). Another model is used in the second phase to fill 
in the possible empty locations with the short vowels in the second phase. The third 
phase uses a monolingual English dictionary of frequent names to find the close 
matches or boost the position of exactly-matched candidates. The different phases are 
described in detail in the next three subsections. 

4.1 Phase one 
Our general method of training was inspired by (AbdulJaleel and Larkey, 2003) with 
some differences due to our proposed two-phase HMM. We use GIZA++ and the 
Cambridge LM toolkit to train the translation probabilities table and the language 
model, respectively; however, since we are dealing with words instead of sentences, the 
English and Arabic characters are treated as words. The translation probability model is 
a set of conditional probability distributions over Arabic characters, conditioned on 
groups of English characters. For example, the English character s might have the 
following probability distribution: P(س|s) = .61, P(ز|s) = .19, P(ص|s) = .10. The bigram 
language model based on character level determines the probability of an English letter 
or group of letters given the previous one letter or group of letters. For example, English 
letter t might have the following bigram model distribution: P(t|a) = .12, P(t|sh) = .002, 
P(t|m) = .014, etc. 
 
The translation model for phase one is built by running the following steps on the 
training data set: 
 

1. The training set is normalized by making all the characters lower cased. Each 
individual letter in both English and Arabic names is treated as a word (by 



THE CHALLENGE OF ARABIC FOR NLP/MT 

 79

inserting a space between them). The first letter of each of the names is prefixed 
with a begin symbol, B, and the last letter is suffixed with an end symbol E. 

2. GIZA++ is run on the training data set. At this stage. It does not matter which 
language is source and which one is target. The purpose of alignment is just to 
filter out those pairs that have been translated or poorly transliterated. If the 
empirical condition from (1) holds for a certain pair, they are kept in the training 
set. The rationale behind this inequality is that better alignments have higher 
alignment score and as the length of the name increases the alignment score 
decreases, so the score is multiplied by the Arabic name length to compensate. 

 
Alignment score * Arabic name length > 10-6 * 2  (1) 

 
3. GIZA++ is run again on the noiseless training set with Arabic as the source and 

English as the target language. The sequences of English letters aligned to the 
same Arabic letters are extracted and counted. The first 100 frequent sequences 
are added to the alphabet (for example “mm” or “sch”). 

4. The new English alphabet is applied to the training set and if the newly formed 
groups of characters happen in the training data they are joined together. For 
example, “m o h a m m e d” becomes “m o h a mm e d”. 

5. GIZA++ is run on the new training set with Arabic as the source and English as 
the target language (like before). This time, the English letters aligned to null are 
removed from the training set. Short vowels (which, in theory, should align with 
unwritten Arabic diacritics) constitute the major part of this removal. For 
example, when aligning “m e h d i” to “م ه د ی”, “e” aligns to null since there is no 
equivalent for it in the Arabic word. Then, “m e h d i” in the training data is 
replaced with “m h d i”. 

6. GIZA++ is executed on the training set with English as the source and Arabic as 
the target language. Translation probabilities, P(ai|ej) (probability of generating 
Arabic letter ai given English letter ej, are extracted and used in the HMM. 

7. The Cambridge LM toolkit is run on the English training set to generate 
unigram, bigram and trigram probabilities. We use the bigram language model, 
P(ej|ej-1), the probability that the English letter ej occurs given the previous letter 
is ej-1, in our HMM model. Note that since we are working on the extended 
composite alphabet, we might have a trigram probability such as P(ss|sh,s). 

 
By preparing P(ai|ej) (translation probability) and P(ej|ej-1) (bigram language model) we 
have everything necessary for the Viterbi algorithm using HMMs. In HMM 
terminology, translation probabilities and language model probabilities are translated 
into emission and transition probabilities, respectively. The sequence of English letters 
that maximize P(a|e)P(e), where P(e) is the character-level language model, are desired. 

We then use beam-search decoding to find k best candidates and then they are 
sent to phase two. 

4.2 Phase two 
The k candidates from the previous phase are the possible transliterations of the Arabic 
input not including the diacritics. For example, the input “مهدی” (mhdY in Buckwalter) 
would end up as “mhdi” instead of the correct transliteration “mehdi”. Phase two 
specifically deals with adding the short vowels to these candidates, based on the newly 
built training set. The following steps are taken to make the training set consistent with 
phase two’s objective: 
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1. Step 5 of phase 1 is repeated, but this time the English letters aligned to null are 

concatenated to the first English letter before being aligned to anything other 
than null, forming new composite letter. For example, in case of “Mohammed”, 
the sequence “M o h a mm a d” becomes “Mo ha mma d”. 

2. GIZA++ is executed on the newly formed training set with English as the source 
and Arabic as the target language. New translation probabilities are generated. 

3. Cambridge LM toolkit is run on the English training set to generate unigram, 
bigram and trigram probabilities. 

 
The resulting translation and language models are considerably larger tables of 
probabilities than those resulting from the previous phase. For example, for an Arabic 
letter like “ق” we might have the following non-zero probabilities: P(ق|g), P(ق|ga), 
P(ق|gh), P(ق|ghau), P(ق|qa), etc. In the language model we similarly might have: P(g|la), 
P(ga|la), P(ge|ma), etc. To avoid confusion, we call these new groups of letters, tokens. 

There is a difference in populating Viterbi probability tables compared to those 
of phase one.  Let us assume a0|a1|…|an is the input Arabic name and e0|e1|…en 
represents one of the k outputs of phase one, where a0…an are the Arabic letters and 
e0…en are the English letters (or composite letters) and “|” are delimiters. In each state i 
(0<=i<=n), there are a group of non-zero P(ai|ti) probabilities, where tis are the tokens. 
But we set all the probabilities, whose related ti is not prefixed by the given ei, to zero. 
The reason is to try all those combinations This populating scheme is repeated for each 
state of the HMM. 

Let us consider an example. Suppose “قطر” (Arabic for Qatar , qTr in Buckwalter 
encoding) is the input and “qtr” is the first output among the k outputs of phase one. In 
phase two, we have non-zero probabilities for P(ق|gh), P(ق|q) and P(ق|qa) but only the 
second and third probabilities remain non-zero since “q” is the prefix of “q” and “qa” 
but not “gh”. 

We apply a similar beam search decoding and for each of the k candidates of 
phase one, l new names are generated. We expect the new translation model and 
language model will result in a more realistic way of writing the names. In case of the 
above example, “Qatar” and “Qatir” would be among the highest scoring candidates. 

The final step of phase two is to combine the resulting kl candidates and send the 
best of them to the next phase. We used a simple log-linear approach, shown in (3), and 
the m candidates are then sent to the third phase. 
 

NewScore = log(phase_one_score)+log(phase_two_score)                         (3) 

4.3 Phase three 
While it is not realistic to gather all the possible names in the world in a database, but it 
is helpful to have a monolingual English list of names that is as large as possible. For 
our experiment, we used a set of  94,646 first and last names combined from the US 
census bureau2 and OAK system (Sekine, 2002). By applying a proximity measure, we 
can retrieve the correct form of names that are generated with only minor errors in the 
previous phase. Also if the name is already generated correctly, it receives a bonus if it 
is a legitimate entry in the dictionary. In our experiment, the Levenshtein distance is 
used as the proximity measure. As a pre-processing task, for each entry in the 
monolingual dictionary we keep another version of the name without vowels. For 
example, along with “carolina”, “crln” is also stored in the dictionary. The algorithm is 
described as follows: 
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1. Repeat steps 2 to 7 below for all m candidates. 
2. The candidate is added to the final output set. 
3. All vowels are removed from the candidates1. 
4. The stripped-off candidate is compared to the vowel-stripped version of entries 

in the dictionary, looking for perfect match. The original (un-stripped) forms of 
the matched entries are returned. For example, the dictionary entry 
“mohammed” and the viterbi output “mohammd” both have the same vowel-
stripped version: “mhmmd”. 

5. The Levenshtein distance of the candidate original form and the original forms 
from step 3 is computed. For the example in step 4 the distance is 1. 

6. Some of the entries in the dictionary may match with more than one candidate. 
The number of repetitions for the candidates is also computed. For example, 
among the m candidates, we might have “mohammed”, “mohammd” and 
“mohemmed”. In this case, the number of repetitions for dictionary entry 
“mohammed” is three. 

7. Those names with Levenshtein distance less than maxD (set empirically) are 
added to the final output set (if not already there). 

 
In order to return final n best candidates the following rescoring scheme (4) is applied, 
where, S is the combined Viterbi score from the last two phases, D is Levenshtein 
distance and R is the number of repetitions. 

Final score = αS + βD + γR         (4) 
 
We assume if a name exists then it should be retrieved by an internet search engine at 
least once. By applying this assumption, we can remove some unwanted candidates 
from the list only by checking whether the name exists on the internet. For the shorter 
names, it is less likely to help because the odds of an existing short word somewhere in 
the internet is very high. However for long words this is less likely to happen. Almost 
all well-known search engines on the internet (e.g. Google and Altavista) do not allow 
their users to try thousands of queries automatically. We used Parseek 
(www.parseek.com), a Persian search engine, to perform this task. 

5. EVALUATION 

For our experiment and evaluation, by doing empirical experiments, we fixed the 
parameters as follows: 
 

k [size(Arabic 
Name)*3.5] 

l Size(Arabic 
Name)*10 

m kl 
n 40 
α 1 
β -5 
γ 2 

The Arabic Treebank 2 part 2 was used to extract the test data. The same approach 
outlined in section 3 was adopted but this time we did not want to perform the filtering 
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automatically because EM is part of our system and filtering based on EM would make 
our system biased. Explicit translations and mistakes were removed from the test list. 

As was discussed in section 2, another problem was that in case of forward 
transliteration, there is more than one acceptable transliteration. Ideally, our gold 
standard should maintain a set of equivalent English names for each Arabic entry (set 
size being at least one for forward transliteration and exactly one for backward 
transliteration) but it was not possible because we did not have a linguist in our team 
and even if we had, it would not be possible to gather all the possible transliterations for 
all the Arabic names. The problem gets worse when in the same collection (in our case, 
Arabic Treebank) there are more than one transliteration for certain words in different 
parts of the text. For example يحيی (yHyY in Buckwlater encoding) is transliterated as 
both Yehiyeh and Yahya. We only add the following condition: if in the domain of 
Arabic Treebank a name has different interpretations either of them is acceptable 
otherwise it is not, even if a human reader agrees with the transliteration’s accuracy. 

We were curious to conduct our experiments on test data in different phases: 
after phase two, after phase three without web filtering, after phase three with web 
filtering, after phase two with web filtering (there is no point to report accuracy of phase 
1 since short vowels are not considered at this stage). The test corpus consists of 273 
Arabic names extracted from Arabic Treebank. 
 

Top 1 Top 5 Top 10 Top 20  
Number % Number % Number % Number % 

Only 
HMM 

119 43.6% 179 65.6% 189 69.2% 196 71.8%

HMM + 
Dictionary  

108 39.6% 180 65.9% 196 71.8% 207 75.8%

HMM + 
web 

filtering 

119 43.6% 186 68.1% 197 72.2% 203 74.4%

HMM + 
Dictionary 

+ web 
filtering 

111 40.7% 190 69.6% 210 76.9% 217 79.5%

 
As is visible in the above table, in top 10 and top 20 cases, using a dictionary improves 
the results significantly. However, the top 1 measure gets worse. The reason can be 
attributed to the weighting factors. While the correct transliteration is successfully 
detected as the best candidate, the dictionary introduces new candidates that wrongfully 
replace the correct one. 

Also, web filtering proves to be quite helpful. It filters out the never-seen-before 
words, giving the chance to the names below the top-20 to rise in the table. 

6. CONCLUSION 
We have presented and evaluated a transliteration system by combining two different 
techniques and taking the best of each. Some parameters should be tuned to bridge 
between the different modules. The combination of values we chose for the parameters 
in this paper was the best of those tried, but further research is needed to determine the 
optimal values for a dataset.  

One problem encountered was the lack of enough training data, resulting in less 
accurate performance for some cases. For example, our system cannot generate a very 
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simple name, Ross (راس), only because in the training data “ssE” (where E represents 
the end of the name) does not occur at all. 

Also, we did not discriminate between names with different origins (ex. Russian 
and Chinese). Classifying the names in the training data into different categories and 
transliterating a name based on its origin (and using the related probability tables) can 
yield more accurate results. 

Also, we are curious to try our module in Portage project (Sadat et al, 2005), an 
existing machine translation system developed at the National Research Council 
Canada, to see how the integration affects the overall performance. 

 
ENDNOTES 
[1] a,e,i,o,u and y are considered vowels. 
[2] http://www.census.gov/genealogy/names/names_files.html 
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