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Abstract

We present an unsupervised extraction of
sequence-to-sequence correspondences from
parallel corpora by sequential pattern mining.
The main characteristics of our method are
two-fold. First, we propose a systematic way
to enumerate all possible translation pair can-
didates of rigid and gapped sequences without
falling into combinatorial explosion. Second,
our method uses an efficient data structure and
algorithm for calculating frequencies in a con-
tingency table for each translation pair candi-
date. Our method is empirically evaluated us-
ing English-Japanese parallel corpora of 6 mil-
lion words. Results indicate that it works well
for multi-word translations, giving 56-84% ac-
curacy at 19% token coverage and 11% type
coverage.

1 Introduction

This paper addresses the problem of identifying “multi-
word” (sequence-to-sequence) translation correspon-
dences from parallel corpora. It is well-known that trans-
lation does not always proceed by word-for-word. This
highlights the need for finding multi-word translation cor-
respondences.

Previous works that focus on multi-word transla-
tion correspondences from parallel corpora include noun
phrase correspondences (Kupiec, 1993), fixed/flexible
collocations (Smadja et al., 1996), n-gram word se-
quences of arbitrary length (Kitamura and Matsumoto,
1996), non-compositional compounds (Melamed, 2001),

captoids (Moore, 2001), and named entities1.
In all of these approaches, a common problem seems to

be an identification of meaningful multi-word translation
units. There are a number of factors which make han-
dling of multi-word units more complicated than it ap-
pears. First, it is a many-to-many mapping which poten-
tially leads to a combinatorial explosion. Second, multi-
word translation units are not necessarily contiguous, so
an algorithm should not be hampered by the word adja-
cency constraint. Third, word segmentation itself is am-
biguous for non-segmented languages such as Chinese or
Japanese. We need to resolve such ambiguity as well.

In this paper, we apply sequential pattern mining to
solve the problem. First, the method effectively avoids an
inherent combinatorial explosion by concatenating pairs
of parallel sentences into single bilingual sequences and
applying a pattern mining algorithm on those sequences.
Second, it covers both rigid (gap-less) and gapped se-
quences. Third, it achieves a systematic way of enumer-
ating all possible translation pair candidates, single- or
multi-word. Note that some are overlapped to account
for word segmentation ambiguity. Our method is bal-
anced by a conservative discovery of translation corre-
spondences with the rationale that direct associations will
win over indirect ones, thereby resolving the ambiguity.

2 Our Basic Idea

Our approach is illustrated in Figure 1. We concatenate
corresponding parallel sentences into bilingual sequences
to which sequential pattern mining is applied. By doing
so, we obtain the following effects:

• It exhaustively generates all possible translation can-
1As of this writing, we learn that Moore will present his

results on named entity at EACL 2003.
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Figure 1: Our Approach

didates,both rigid and gappedsequences, yetavoid-
ing combinatorial explosion.

• It achieves an efficient calculation of a contingency
table in asinglerunning of sequential pattern min-
ing.

In what follows, we describe sequential pattern mining
and each module in Figure 1.

2.1 Sequential Pattern Mining

Sequential pattern mining discovers frequent subse-
quences as patterns in a sequence database (Agrawal
and Srikant, 1995). Here, a subsequence is an order-
preserving item sequence where some gaps between
items are allowed. In this paper, we write the support of
subsequences in sequence databaseS assupportS(s),
meaning the occurrence frequency ofs in S. The prob-
lem is defined as follows:

Given a set of sequencesS, where each sequence con-
sists of items, and a given a user-specified minimum sup-
port ξ, sequential pattern mining is to find all of the
subsequences whose occurrence frequency in the setS is
no less thanξ.

A sequential pattern is different from N-gram pattern
in that the former includes a pattern with and without
gaps and does not impose any limit on its length. These
characteristics in sequential pattern mining leads us to the
idea of concatenating corresponding parallel sentences
into a bilingual sequence database from whichbilingual
sequential patterns are mined efficiently.
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Figure 2: A Sample Execution of PrefixSpan

2.2 Bilingual Lexicon Extraction

2.2.1 Bilingual Sequence Database

For each parallel sentence, we undergo language-
dependent preprocessing, such as word segmentation and
part-of-speech tagging. Then we concatenate the mono-
lingual sequences into a single bilingual sequence, and
a collection of bilingual sequences becomes a sequence
databaseS.

2.2.2 Sequential Pattern Mining

A single run of sequential pattern mining takes care of
identifying and counting translation candidate patterns –
rigid and gapped, some of which are overlapped – in the
bilingual sequence database. All English subsequences
satisfying the minimum supportξ will be generated (e.g.,
“e1”, “ e1e2”, “ e1e3” · · ·, indicated byEi ). Similarly, all
Japanese and bilingual subsequences with support≥ ξ
will be generated (indicated byJj andEiJj respectively).
It is important to point out that for any bilingual pattern
EiJj , corresponding English patternEi and Japanese
patternJj that form constituents of the bilingual pattern
are always recognized and counted.

PrefixSpan

In order to realize sequential pattern mining, we use
PrefixSpan algorithm (Pei et al., 2001). The general idea
is to divide the sequence database by frequentprefixand
to grow the prefix-spanning patterns in depth-first search
fashion.

We introduce some concepts. Letα be a sequential
pattern in the sequence databaseS. Then, we refer to the
α-projected database, S|α, as the collection of postfixes
of sequences inS w.r.t prefixα.

A running example of PrefixSpan with the minimum
supportξ = 2 (i.e., mining of sequential patterns with
frequency≥ 2) is shown in Figure 2. Each item in a se-



function PrefixSpan (α, S|α)
begin

B ← {b|(s ∈ S|α, b ∈ s)
∧ (supportS |α(〈b〉) ≥ ξ)
∧ (projectable(α, b))}

foreach b ∈ B
begin

(S|α)|b ← {〈i, s′〉|(〈i, s〉 ∈ S|α)
∧ (s′ = postfix(s, b))}

call PrefixSpan (αb, (S|α)|b)
end

end

Figure 3: Pseudo Code of PrefixSpan

quence database is indicated byeij wheree is an item,
i is a sequence id,j is the offset for thepostfix of se-
quence idi. First, frequent sequential patterns with length
1 are selected. This givesA,B andC. The support of
D is less than the minimum support2, so D-projected
database willnot be created. For projections drawn with
bold lines in Figure 2, we proceed with a frequent prefix
A. SinceA satisfies the minimum support2, it creates a
A-projected database derived from the sequence database
S (S|A). FromS|A, frequent itemsB,C are identified,
subsequently forming prefix patternsAB andAC, and
corresponding projected databases of the postfixesS|AB ,
S|AC . We continue with projection recursively to mine
all sequential patterns satisfying the minimum support
count2.

PrefixSpan is described in Figure 3. The predicatepro-
jectable is designed to encode if a projection is feasible
in an application domain. The original PrefixSpan gives
a predicate that always returns true.

There are a number of possibilities for projectable to
reflect linguistic constraints. A default projectable pred-
icate covers both rigid and gapped sequences satisfying
the minimum support. If we care for word adjacency, the
projectable should return true only when the last item of
the mined pattern and the first item of a postfix sequence
in the projected database are contiguous. Another possi-
bility is to prevent a certain class of words from being an
item of a sequence. For example, we may wish to find
a sequence consisting only of content words. In such a
case, we should disallow projections involving functional
word item.

2.2.3 Sequence-to-Sequence Correspondence

The effect of sequential pattern mining from bilingual
sequence database can better be seen in a contingency
table shown in Table 1. Frequencies of a bilingual pattern
EiJj , an English patternEi, and a Japanese patternJj

correspond toa, a + b, anda + c respectively. Since
we know the total number of bilingual sequencesN =
a + b + c + d, values ofb, c and d can be calculated
immediately.

Table 1: Contingency Table

Jj ¬ Jj

Ei a b a + b
¬ Ei c d

a + c N

The contingency table is used for calculating a sim-
ilarity (or association) score betweenEi and Jj . For
this present work, we use Dunning’s log-likelihood ratio
statistics (Dunning, 1993) defined as follows:

sim = a log a + b log b + c log c + d log d

−(a + b) log (a + b)− (a + c) log (a + c)
−(b + d) log (b + d)− (c + d) log (c + d)
+(a + b + c + d) log (a + b + c + d)

For each bilingual patternEiJj , we compute its similarity
score and qualify it as a bilingual sequence-to-sequence
correspondence if no equally strong or stronger associ-
ation for monolingual constituent is found. This step is
conservative and the same as step 5 in Moore (2001) or
step 6(b) in Kitamura and Matsumoto (1996). Our im-
plementation uses a digital trie structure called Double
Array for efficient storage and retrieval of sequential pat-
terns (Aoe, 1989).

For non-segmented language, a word unit depends on
results of morphological analysis. In case of Japanese
morphological analysis, ChaSen (Matsumoto et al., 2000)
tends to over-segment words, while JUMAN (Kurohashi
et al., 1994) tends to under-segment words. It is diffi-
cult to define units of correspondences only consulting
the Japanese half of parallel corpora. A parallel sentence-
pair may resolve some Japanese word segmentation am-
biguity, however, we have no way to rank for word units
with the same degree of segmentation ambiguity. In-
stead, we assume that frequently co-occurred sequence-
to-sequence pairs in the entire parallel corpora are trans-
lation pairs. Using the global frequency of monolingual
and bilingual sequences in the entire parallel corpora, we
have better chance to rank for the ties, thereby resolv-
ing ambiguity in the monolingual half. To follow this
intuition, we generate overlapped translation candidates
where ambiguity exists, and extract ones with high asso-
ciation scores.

Sequential pattern mining takes care of translation can-
didate generation as well as efficient counting of the gen-
erated candidates. This characteristic is well-suited for
our purpose in generating overlapped translation candi-
dates of which frequencies are efficiently counted.



3 Experimental Results

3.1 Data

We use the English-Japanese parallel corpora that are
automatically aligned from comparable corpora of the
news wires (Utiyama and Isahara, 2002). There are
150,000 parallel sentences which satisfy their proposed
sentence similarity. We use TnT (Brants, 2000) for En-
glish POS tagging and ChaSen (Matsumoto et al., 2000)
for Japanese morphological analysis, and label each to-
ken to either content or functional depending on its part-
of-speech.

Table 2: Statistics of 150,000 parallel sentences

Japanese English
content (token) 2,039,656 2,257,806
content (type) 47,316 57,666
functional (token) 2,660,855 1,704,189
functional (type) 1,811 386

3.2 Evaluation Criteria

We evaluate our sequence-to-sequence correspondence
by accuracy and coverage, which we believe, similar cri-
teria to (Moore, 2001) and (Melamed, 2001)2. Let Cseq

be the set of correct bilingual sequences by a human
judge,Sseq be the set of bilingual sequences identified
by our system,Ctoken be the multiset of items covered
by Cseq, Ttoken be the multiset of items in the bilingual
sequence database,Ctype be the set of items covered by
Cseq, andTtype be the set of items in the bilingual se-
quence database. Then, our evaluation metrics are given
by:

accuracy =
|Cseq|
|Sseq|

token coverage =
|Ctoken|
|Ttoken|

2We would like to examine how many distinct translation
pairs are correctly identified (accuracy) and how well the iden-
tified subsequences can be used for partial sequence alignment
in the original parallel corpora (coverage). Since all the correct
translation pairs in our parallel corpora are not annotated, the
sum of true positives and false negatives remain unknown. For
this reason, we avoid to use evaluation terms precision and re-
call to emphasize the difference. There are many variations of
evaluation criteria used in the literature. At first, we try to use
Moore’s criteria to present a direct comparison. Unfortunately,
we are unclear about frequency for multi-words in the parallel
corpora, which seems to require for the denominator of his cov-
erage formula. Further, we also did not split train/test corpus
for cross-validation. Our method is an unsupervised learning,
and the learning does not involve tuning parameters of a prob-
abilistic model for unseen events. So we believe results using
entire parallel corpora give indicative material for evaluation.

type coverage =
|Ctype|
|Ttype|

In order to calculate accuracy, each translation pair is
compared against the EDR (Dictionary, 1995). All the
entries appeared in the dictionary were assumed to be
correct. The remaining list was checked by hand. A
human judge was asked to decide “correct”, “nearmiss”,
or “incorrect” for each proposed translation pair with-
out any reference to the surrounding context. Distinc-
tion between “nearmiss” and “incorrect” is that the for-
mer includes translation pairs that are partially correct3.
In Tables 3, 4, and 5, accuracy is given as a range from
a combination of “correct” and “nearmiss” to a combi-
nation of “nearmiss” and “incorrect”. Having calculated
the total accuracy, accuracies for single-word translation
pairs only and for multi-word translation pairs only are
calculated accordingly.

3.3 Results

Our method is implemented in C++, and executed on
a 2.20 GHz Penntium IV processor with 2GB mem-
ory. For each experiment, we set the minimum support
(minsup) and the maximum length (maxpat) of pat-
terns. All experiments target bilingual sequences of con-
tent words only, since we feel that functional word cor-
respondences are better dealt with by consulting the sur-
rounding contexts in the parallel corpora4. An execution
of bilingual sequence databases compiled from 150,000
sentences, takes less than 5 mins withminsup = 3 and
maxpat = 3, inferring 14312 translation pairs.

Given different language pair, different genre of text,
different evaluation criteria, we find it difficult to di-
rectly compare our result with previous high-accuracy ap-
proaches such as (Moore, 2001). Below, we give an ap-
proximate comparison of our empirical results.

3.3.1 Rigid Sequences
Table 3 shows a detailed result of rigid sequences with

minsup = 3, maxpat = 3. In total, we obtain 14312
translation pairs, out of which we have 6567 single-word

3We include “not sure” ones for a single-word translation.
Those are entries which are correct in some context, but debat-
able to include in a dictionary by itself. As for multi-word trans-
lation, we include pairs that can become “correct” in at most 2
rewriting steps.

4Inclusion of functional word items in bilingual sequences
is debatable. We have conducted an preliminary experiment of
approx 10,000 sentences taken from a English–Japanese dic-
tionary. As sentences are shorter and more instructive, we get
grammatical collocations such as “impressed with /ni kanmei
” and “apologize for /koto owabi” or phrasal expressions such
as “for your information /go sanko” and “on behalf of /wo
daihyo shi”. However, we felt that it was not practical to in-
clude functional words in this work, since the parallel corpora
is large-scale and interesting translation pairs in newspaper are
named entities comprised of mostly content words.



Table 3: Result of Rigid Sequence Only with minsup = 3, maxpat = 3. Accuracy is given as a range from a combination
of “correct” and “nearmiss” to a combination of “nearmiss” and “incorrect”. The left side of slash gives a tigher
evaluation and the right side of slash gives a looser evaluation.

minsup maxpat extracted correct total single-word multi-word token type
sequence sequence accuracy accuracy accuracycoverage coverage

3 3 1000 927 / 988 0.927 / 0.988 0.942 / 0.988 0.824 / 0.984 0.142 0.018
3 3 2000 1836 / 1969 0.918 / 0.986 0.953 / 0.992 0.742 / 0.945 0.164 0.035
3 3 3000 2723 / 2932 0.908 / 0.977 0.951 / 0.991 0.732 / 0.923 0.174 0.050
3 3 4000 3563 / 3882 0.891 / 0.971 0.951 / 0.990 0.695 / 0.909 0.179 0.064
3 3 5000 4330 / 4825 0.866 / 0.965 0.948 / 0.989 0.656 / 0.903 0.182 0.076
3 3 6000 5052 / 5752 0.842 / 0.959 0.945 / 0.990 0.618 / 0.891 0.184 0.087
3 3 7000 5776 / 6656 0.825 / 0.951 0.941 / 0.989 0.607 / 0.879 0.186 0.098
3 3 8000 6350 / 7463 0.794 / 0.933 0.938 / 0.987 0.568 / 0.848 0.187 0.104
3 3 9000 7034 / 8345 0.782 / 0.927 0.935 / 0.985 0.562 / 0.844 0.188 0.113

Table 4: Result of Rigid Sequences Only with minsup = 10 and minsup = 5.
minsup maxpat extracted correct total single-word multi-word token type

sequence sequence accuracy accuracy accuracycoverage coverage
10 3 4467 3989 / 4341 0.893 / 0.972 0.946 / 0.9880.712 / 0.918 0.085 0.011
5 3 7654 6325 / 7271 0.826 / 0.950 0.937 / 0.9860.618 / 0.882 0.188 0.106

10 10 4518 4002 / 4392 0.886 / 0.972 0.947 / 0.988 0.690 / 0.921 0.183 0.073
5 10 8007 6383 / 7387 0.797 / 0.922 0.938 / 0.9860.563 / 0.817 0.188 0.106

Table 5: Result of Rigid and Gapped Sequences with minsup = 10. A default projectable constraint in Figure 3 is used.
minsup maxpat extracted correct total single-word multi-word token type

sequence sequence accuracy accuracy accuracycoverage coverage
10 3 5792 4503 / 4979 0.777 / 0.860 0.950 / 0.9890.530 / 0.674 0.085 0.012

Table 6: Comparison between Table 4 and Table 5 with minsup = 10, maxpat = 3
single-word single-word single-word multi-word multi-word multi-word

correct wrong all correct wrong all
Both 3239 167 3406 554 181 735
Rigid only 25 18 43 171 112 283
Gapped only 0 2 2 710 937 1649

Table 7: Length Distribution of 171 correct Rigid multi-word Sequences Only (left) vs. Length Distribution of 112
wrong Rigid multi-word Sequences Only (right)

HHHHE
J

1 2 3

1 n/a 16 0
2 15 110 6
3 5 7 12

HHHHE
J

1 2 3

1 n/a 11 0
2 19 29 19
3 3 24 7

Table 8: Length Distribution of 710 correct Rigid and Gapped multi-word Sequences (left) vs. Length Distribution of
937 wrong Rigid and Gapped multi-word Sequences (right)

HHHHE
J

1 2 3

1 n/a 17 0
2 45 546 15
3 9 43 35

HHHHE
J

1 2 3

1 n/a 30 2
2 36 229 239
3 15 162 226



translation pairs and 7745 multi-word translation pairs.
In this paper, we evaluate only the top 9000 pairs sorted
by the similarity score.

For single-word translation, we get 93-99% accuracy
at 19% token coverage and 11% type coverage. This im-
plies that about 1/5 of content word tokens in the paral-
lel corpora can find their correspondence with high ac-
curacy. We cannot compare our word alignment result
to (Moore, 2001), since the real rate of tokens that can
be aligned by single-word translation pairs is not explic-
itly mentioned. Although our main focus is sequence-to-
sequence correspondences, the critical question remains
as to what level of accuracy can be obtained when ex-
tending coverage rate, for example to 36%, 46% and
90%. Our result appears much inferior to Moore (2001)
and Melamed (2001) in this respect and may not reach
36% type coverage. A possible explanation for the poor
performance is that our algorithm has no mechanism to
check mutually exclusive constraints between translation
candidates derived from the same paired parallel sen-
tence.

For general multi-word translation, our method seems
more comparable to Moore (2001). Our method performs
56-84% accuracy at 11% type coverage. It seems bet-
ter than “compound accuracy” which is his proposal of
hypothesizing multi-word occurrences, being 45-54% at
12% type coverage. However it is less favorable to “mul-
tiword accuracy” provided by Microsoft parsers, being
73-76% accuracy at 12% type coverage (Moore, 2001).
The better performance could be attributed to our redun-
dant generation of overlapped translation candidates in
order to account for ambiguity. Although redundancy
introduces noisier indirect associations than one-to-one
mapping, our empirical result suggests that there is still a
good chance of direct associations being selected.

Table 4 shows results of rigid sequences with a higher
minimum support and a longer maximum length. Com-
paring with Table 3, setting a higher minimum support
produces a slightly more cost-effective results. For ex-
ample,minsup = 10,maxpat = 3, there are 4467 pairs
extracted with 89.3-97.1% accuracy, while the top 4000
pairs inminsup = 3,maxpat = 3 are extracted with
89.1-97.1% accuracy. Table 4 reveals a drop in multi-
word accuracy when extendingminpat, indicating that
care should be given to the length of a pattern as well as
a cutoff threshold.

Our analysis suggests that an iterative method by con-
trolling minsup and maxpat appropriately seems bet-
ter than a single execution cycle of finding correspon-
dences. It can take mutually exclusive constraints into
account more easily which will improve the overall per-
formance. Another interesting extension is to incorporate
more linguistically motivated constraints in generation of
sequences. Yamamoto et al. (2001) reports that N-gram

translation candidates that do not go beyond the chunk
boundary boosts performance. Had we performed a lan-
guage dependent chunking in preparation of bilingual se-
quences, such a chunk boundary constraint could be sim-
ply represented in the projectable predicate. The issues
are left for future research.

3.3.2 Gapped Sequences

One of advantages in our method is a uniform genera-
tion of both rigid and gapped sequences simultaneously.
Gapped sequences are generated and extracted without
recording offset and without distinguisting compositional
compounds from non-compositional compounds. Al-
though non-compositional compounds are rare and more
difficult to extract, compositional compounds are still
useful as collocational entires in bilingual dictionary.

There are positive and negarive effects in our gapped
sequences using sequential pattern mining. Suppose we
have English sequences of “My best friend wishes your
father to visit · · ·” and “· · · best wishes for success”.
Then, we obtain a pattern “best wishes” that should be
counted separately. However, if we have sequences of
“staying at Hilton hotel” and “staying at Kyoto Miyako
hotel”, then we will obtain a kind of a phrasal template
“staying at hotel” where the individual name of hotel,
Hilton or Kyoto Miyako, is abstracted. Usefulness of
such gapped sequences is still open, but we emperically
evaluate the result of gapped sequences withminsup =
10 andmaxpat = 3 shown in Table 5.

Comparing Table 4 and 5, we lose the multi-word ac-
curacy substantially. Table 6 is a breakdown of rigid and
gapped sequences withminsup = 10, maxpat = 3.
The “Both” row lists the number of pairs found, under a
category described in the column head, in both rigid and
gapped sequences. The “Rigid only” row counts for those
only found in rigid sequences, while the “Gapped only”
row counts for those only found in gapped sequence. We
learn that the decrease in multi-word accuracy is due to
an increase in the portion of wrong pairs in sequences;
57% (937 / 1649) in gapped sequences whilst 40% (112 /
283) in rigid sequences.

However, gapped sequences have contributed to an
increase in the absolute number of correct multi-word
translation pairs (+539 correct pairs). In order to gain a
better insight, we summarizes the length combination be-
tween English pattern and Japanese pattern as reported
in Tables 7 and 8. It reveals that the word adjacency
constraint in rigid sequences are too stringent. By relax-
ing the constraint, 436 (546 - 110) correct 2-2 translation
pairs are encountered, though 200 (229 - 29) wrong 2-2
pairs are introduced at the same time. At this particular
instance ofminsup = 10 andmaxpat = 3, consider-
ing gapped sequence of length 3 seems to introduce more
noise.



Admittedly, we still require further analysis as to
searching a break-even point of rigid/gapped sequences.
Our preliminary finding supports the work on collocation
by Smadja et al. (1996) in that gapped sequences are also
an important class of multi-word translations.

4 Related Work

Moore (2001) presents insightful work which is closest
to ours. His method first computes an initial association
score, hypothesizes an occurrence of compounds, fuses
it to a single token, recomputes association scores as if
all translations are one-to-one mapping, and returns the
highest association pairs. As for captoids, he also com-
putes association of an inferred compound and its con-
stituent words. He also uses language-specific features
(e.g. capital letters, punctuation symbols) to identify
likely compound candidates.

Our method is quite different in dealing with com-
pounds. First, we outsource a step of hypothesizing com-
pounds to language-dependent preprocessors. The reason
is that an algorithm will become complicated if language-
specific features are directly embedded. Instead, we pro-
vide an abstract interface, namely the projectable predi-
cate in sequential pattern mining, to deal with language-
specific constraints. Second, we allow items being re-
dundantly counted and translation pair candidates being
overlapped. This sharply contrasts with Moore’s method
of replacing an identified compound to a single token for
each sentence pair. In his method, word segmentation
ambiguity must be resolved before hypothesizing com-
pounds. Our method reserves a possibility for word seg-
mentation ambiguity and resolves only when frequently
co-occured sequence-to-sequence pairs are identified.

Since we compute association scores independently, it
is difficult to impose mutually exclusive constraints be-
tween translation candidates derived from a paired par-
allel sentence. Hence, our method tends to suffer from
indirect association when the association score is low, as
pointed out by Melamed (2001). Although our method
relies on an empirical observation that “direct associa-
tions are usually stronger than indirect association”, it
seems effective enough for multi-word translation. bal-
anced by a

As far as we know, our method is the first attempt
to make an exhaustive enumeration of rigid and gapped
translation candidates of both languages possible, yet
avoiding combinatorial explosion. Previous approaches
effectively narrow down its search space by some heuris-
tics. Kupiec (1993) focuses on noun-phrase translations
only, Smadja et al. (1996) limits to find French transla-
tion of English collocation identified by his Xtract sys-
tem, and Kitamura and Matsumoto (1996) can exhaus-
tively enumerate only rigid word sequences.

Many of works mentioned in the last paragraph as

well as ours extract non-probabilistic translation lexicons.
However, there are research works which go beyond
word-level translations in statistical machine translation.
One notable work is that of Marcu and Wong (2002),
which is based on a joint probability model for statistical
machine translation where word equivalents and phrase
(rigid sequence) equivalents are automatically learned
form bilingual corpora.

Our method does not iterate an extraction process as
shown in Figure 1. This could be a cause of poor perfor-
mance in single-word translation pairs, since there is no
mechanism for imposing mutually exclusion constrains.
An interesting question then is what kind of iteration
should be performed to improve performance. Prob-
abilistic translation lexicon acquisition often uses EM
training on Viterbi alignments, e.g. (Marcu and Wong,
2002), while non-probabilistic ones employ a greedy al-
gorithm that extracts translation pairs that give higher as-
sociation scores than a predefined threshold where the
threshold is monotonically decreasing as the algorithm
proceeds, e.g. (Kitamura and Matsumoto, 1996). The
issue is left for future work.

Last but not least, no previous works give an explicit
mention to an efficient calculation of each cell in a con-
tingency table. Our approach completes the process by
a single run of sequential pattern mining. Since speed
does not affect results of accuracy and coverage, its sig-
nificance is often ignored. However, it will be important
when we handle with corpora of large size.

5 Conclusions

We have proposed an effective method to find sequence-
to-sequence correspondences from parallel corpora by se-
quential pattern mining. As far as multi-word translation
is concerned, our method seems to work well, giving 56-
84% accuracy at 19% token coverage and 11% type cov-
erage.

In this work, we choose English-Japanese pair and em-
pirically evaluate our method. However, we believe the
method is applicable to any language pair with appropri-
ate language-specific preprocessing tools. As by-product
of our experiment, we obtain Japanese-English parallel
corpora of 150,000 sentences where alignment of vali-
dated subsequence correspondences are back-annotated.
This was accomplished by looking up to a Double Array
dictionary of sequential patterns constructed in the ex-
traction method. This shows that our method can be use-
ful not only to development of semi-automatic lexicon for
data-driven machine translation, but also to annotation of
corresponding subsequences in translation memory sys-
tem.
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