
An MT Learning Environment for Computational Linguistics Students
Svetlana Sheremetyeva

Department of Computational Linguistics
Copenhagen Business School,

Bernhard Bangs Alle 17 B,
DK-2000, Denmark
lanaconsult@mail.dk

Abstract
This paper discusses the issue of suitability of
software used for the teaching of Machine
Translation. It considers requirements to such
software, and describes a set of tools that have
initially been created as developer environment
of an APTrans MT system but can easily be
included in the learning environment for MT
training. The tools are user-friendly and feature
modularity and reusability.

Introduction
A current trend in the teaching of Machine
Translation to bridge the gap between theory
and practice to a large extent consists of
using on-line MT demos and/or commercial
systems or other tools developed in the
course of MT research. No matter that it has
become possible only recently when in
addition to the text books, computers and
MT software have become an inherent part
of MT learning environment; quite an
experience has already been accumulated in
developing an MT training task pool.
Example exercises based on existing MT
software can be found in practically every
paper on the teaching of MT. See, for
example, recent articles such as Pérez-Ortiz
and Forcada (2001), Somers (2001), Clavier
and Poudat 2001), Kenny and Way (2001),
Blanc (2001).

Still it is not that easy nowadays to
provide for students to have a hands-on MT
experience. The survey on Tools and
Techniques for Machine Translation
Teaching (Balkan et al., 1997) concludes
that using a working MT system in the
classroom involves a huge amount of effort

both in terms of getting funds for purchasing
commercial MT systems and in terms of
using them to the most advantage of MT
students which is not always possible due to
the "locked" character of commercial
products.

This paper attempts to contribute to the
problem by raising the issue of suitability of
MT software for an MT student (and
instructor). In other words, we believe that
the MT learning environment will benefit
from a kind of training software that was
specially selected or designed for an MT
student as the main user. From this
perspective MT training software should be
treated as any computer application for
special purposes and thus should meet quite
a number of requirements.

A massive collection of papers on human-
computer interaction - see, for example, Dix
et al. (1998), Beyer and Holtzblatt (1998),
Hackos and Redish (1998) - attempt to bring
some structure to the often chaotic
application design process. Topics include
human limitations, usability principles,
interface design, models of the user, task
analysis, and practical methods of gathering
data about users and tasks. It is stressed that
there are no minor issues in the field of
interface design and even such common
topics as error messages, toolbars, tabbed
dialogues, icons and responsiveness should
be well thought out.

In what follows we first attempt task and
user analysis for an MT training tool as a
special computer application for a
Computational Linguistics student. We then
illustrate our considerations with a brief

79

description of an APTrans application (see
next paragraph) focusing on its developer
environment that might be used as such
training tool. At the end we discuss MT
training issues that could be covered with the
APTrans tool kit.

APTrans is an experimental MT system
for translating patent claims as described in
Sheremetyeva and Nirenburg (1999) that is
currently under development. The current
version of APTrans is a 32-bit Windows
application developed to run in a number of
operating environments: Windows
95/98/2000/NT. The facts that APTrans
draws on domain knowledge but does not
impose a sublanguage approach to MT, and
that both the system and developer tools run
on a personal computer, offer a wide range
of training applications.

Desiderata for MT Training Software
Task and User analysis. Practically everyone
involved in the teaching of MT recognizes
what is very clearly formulated in Somers
(2001): the teaching of Machine Translation
takes different perspectives depending of
student profiles, such as Computer Science,
Computational Linguistics, Translation or
Foreign Language Learning. The first two
groups are often put in one category, which
may be due to the fact that "historically, MT
was probably the first non-numerical use of
computers proposed" (Somers, op.cit). From
those early days both Computer Science and
Computational Linguistics grew into related
but well established fields of their own with
the focus on different issues. For the
Computer Science students the focus is on
high level programming skills in the most
advanced programming languages, such as
C, C+, C++, etc. For the Computational
Linguistics students the emphasis is on MT
linguistic problems and solutions. That
means that if we want to train students in
solving MT related linguistic problems it
would be reasonable not to augment the
difficulty of their tasks with programming
matters. As for the content of training that
should be covered by an MT training tool (or
a tool kit) ideally it should be possible to use
it for both

• illustrative purposes to familiarize
students with weaknesses of MT software,
by presenting them (in a very clear way) the
results of every processing step for linguistic
error analysis and
• "participation" purposes to let a student
interfere with MT processing at every
possible stage (lexicon and grammar
acquisition, disambiguation, etc.) to
influence the output of MT so as to
immediately see the results of his/her
updates.
 It should also be possible to save traces of
students' training activity for further work or
classroom discussion.
User constraints. An MT training tool
should meet general user requirements of
making the program as easy as possible to
install and to use despite its diverse and
complex functionality. We should take into
consideration human limitations and desire
to automate tedious tasks such as typing,
revising texts, propagating changes, etc. It is
desirable to visualize the results of every
step of the training procedure in the most
"human" way. All user-computer
communication should be done in the most
natural way, i.e. in a natural language.

APTrans Overview
A prototype of the APTrans application has
been described in Sheremetyeva and
Nirenburg (1999) so we shall not deal with
specifications of the application but rather
with the description of the application and its
developer environment from the angle of
using it as part of MT learning environment.

APTrans is an experimental interactive
MT system for translating patent claims
between any pair of European languages.
The model has been initially developed for
English and Russian as both SLs and TLs
but is readily extensible to other languages, -
the Danish language is now being added to
the system. For better understanding all
examples in this paper are in English.

APTrans consists of i) a partially
interactive SL text analysis module, ii) an
automated transfer module and iii) an
automated TL text generation module. The
analysis module, in turn, includes a fully
automated tagger and phrase chunker, and a

80

submodule of interactive predicate/case-role
dependency analysis of SL text.

The system takes an SL claim text as
input. After automatic tagging and chunking
the interactive analysis module guides the
user through a sequence of SL analysis
procedures, as a result of which the system
produces a set of internal knowledge
structures in the form of predicate-argument
templates filled with SL strings:

text::={ template}{template}*
template::={predicate-class predicate ((case-
role)(case-role}*)
case-role::= (rank status value)
value::= {word tag}*
where predicate-class is a label of an
ontological concept, predicate is a string
corresponding to a predicate from the system
lexicon, case-roles are ranked according to
the frequency of their co-occurrence with
each predicate in the training corpus, status
is a semantic status of a case-role, such as
agent, theme, place, instrument, etc., and
value is a string which fills a case-role. Tag
is a label, which conveys both morphological
information (such as POS, number and
inflection type) and semantic information, an
ontological concept, (such as object, process,
substance, etc.). For example, the tag Nf
means that a word is a noun in singular (N),
means a process (f), and does not end in -
ing. This tag will be assigned, for example,
to such words as activation or alignment. At
present we use 23 tags that are combinations
of 1 to 4 features out of a set of 19 semantic,
morphological and syntactic features for 14
parts of speech. For example, currently the
feature structure of noun tags is as follows:

Tag
[POS
[Noun
[object[plural, singular]
process[-ing, other[plural, singular]]
substance [plural, singular]
other [plural, singular]]]]]

The number of semantic classes (concepts)
and case-roles is domain based and is rather

small but can be easily augmented. A set of
content templates filled with SL tagged
strings is further transferred into a set of
content templates filled with TL tagged
strings. The latter are input into the APTrans
generator that creates a tree of the text plan
and outputs a TL claim text.

At the current stage of development the
APTrans knowledge includes analysis,
generation and transfer grammar, flexible
depth tagging lexicons for tagging case-role
fillers as mentioned above, and deep
(information-rich) lexicons of predicates.
This lexicon is the main part of the APTrans
static knowledge, covers the lexical,
semantic and syntactic knowledge, and is the
basis of knowledge representation. The user
can customize these lexicons. The
architecture of APTrans is integrated with
the development environment.

Developer Tools
The developer environment of the APTrans
is a set of interactive tools created for a
linguist developer. The development process
of APTrans validated the effectiveness the
tools and their integration into the system.
The linguist is free to experiment with
different kinds (and sizes) of lexical and
grammatical knowledge to improve the MT
output without extra programming effort.
The APTrans development environment
consists of lexicon and grammar acquisition
tools with control and interactive interfaces
for updating linguistic knowledge and
tracing complete or partial processing in
APTrans Analyzer, Transfer Module and
Generator. Each of these main steps of
APTrans processing is achieved by several
lexical and structural phases every one of
which is customized by an individual
developer tool. It is impossible to detail
every component of the APTrans developer
environment in one paper so we will limit
our description to those that have already
been tested in MT training and will only
briefly mention the others including the
main interface that can also be used as part
of the development environment.

81

Figure 1. A screen shot of the interface of the tagging lexicon acquisition tool.

Tagging lexicon acquisition tool
Figure 1 shows a screen shot of the interface
of the tagging lexicon acquisition tool when
it is set for assigning only 10 shallow tags
(just parts of speech). A new "deeper tag"
Nf coding the features "noun", "singular"
"no -ing ending", "process" is being added
through a succession of pop-up windows.
Selecting "Configure" in the main menu
gives access to a window through which one
can delete, edit or add new tags to the tool.
For example, clicking on the "New" button
in the first pop-up window gives access to
the second window where one can type in
any new tag. After clicking on the "OK"
button the new tag will be displayed on the
right pane of the interface next to its check
box.
 The basic principle for this tool is that the
user can easily update both the list of words
and tags making the latter larger or smaller

in number and as "shallow" or "deep" as
required. Any word in this lexicon can be
easily "retagged".

The main menu in the right top corner of
the interface has "File", "Edit" and
"Configure" selections. The left pane shows
an interactive "Find" window, the buttons
"New", "Undo" and "Delete" (for updating a
word list) and a scrollable list of lexical
units, including multiword prepositions,
adverbs, idiomatic phrases, etc. The right
pane contains an interactive editing window
and a number of tags next to check boxes. A
checked box indicates a tag assigned to a
highlighted word. Using selections under
"File" in the main menu the user can import
any lists of words either from external text
files or from files in a special format where
words were presorted according to their
morphological and/or semantic features. In
the latter case the tool assigns tags to the
imported words automatically. The tool is

82

Figure 2. A screen shot of the interface of the analysis grammar acquisition tool with a
trace of tagging. A list of new words is displayed in a pop-up window and can be
automatically transferred to the tagging lexicon.

pipelined to the tagger, so as to
automatically import words that were not
recognized by the system after tagging a
certain amount of text (see Figure 2). The
coverage of the lexicon thus improves
incrementally.
 Depending upon the selection in the "Edit"
menu the user can get either a full word list
of the lexicon or sublists of words sorted by
their suffixes, prefixes, or tags. It is also
possible to get a list of untagged words and
tag them through the tool interface. The user
can also open a completely new (empty)
lexicon to start lexicon acquisition from
scratch. Any variant of tagging lexicon thus
updated can be saved and re-opened for
further work.

Analysis grammar acquisition tool
Figures 2 and 3 show screen shots of the
developer interface for tracing and updating
analysis process at different phases, -
tagging, disambiguation and structural

analysis of the input text. It contains the
main menu "File", "Configure" "Show" and
"Help", a set of bookmarks "Tagging",
"Tokenization", "Disambiguation", and
"Phrase Chunking", and a control screen
divided into two windows with instruction
buttons under each of them. The lower
window of the screen traces the analysis
phase corresponding to a certain bookmark,
the upper window displaying the analysis
trace of the previous phase, which makes it
convenient to spot any errors. At the set up
stage the upper window is empty and
interactive. The user can either download a
text from an external file or type it directly
into the upper interactive window. With the
help of the bookmarks or/and instruction
buttons the user is guided through the
various processing steps: tagging,
tokenization, disambiguation, and chunking,
the latter being a succession of processing
steps itself starting with simple noun phrases
followed by integrating them into complex

83

Figure 3. A screen shot of the interface of the analysis grammar acquisition tool with
traces of chunking noun, prepositional, adverbial, gerundial and infinitival phrases.

noun phrases (those including prepositions
and conjunctions), prepositional, adverbial,
infinitival and gerundial phrases. Clicking
on the selection "Save all" in the "File"
menu saves traces of individual processing
stages in different text files, the file names
being automatically marked with suffixes
corresponding to processing phases, for
example, as follows:
Text, TextTag, textTok, TextNP, etc.,
which makes it very easy to compare
different traces based on different rule sets
when "brushing up" the grammar. What
further makes the update procedure less
tedious and time consuming is that
processing traces are presented in a very
illustrative form, e.g., in addition to brackets
different colors are used for every type of
phrase.

Different selections in the "Configure"
menu of this tool open corresponding
interactive compilers for writing or updating
rules underlying certain analysis phases.
Immediately after saving new rules an
updated trace can be displayed in the lower
part of the control screen by the "Refresh"
button. Figure 4 shows the interface of the
phrase-chunking compiler (all other
compilers have similar functionalities). The
right pane is a type-in area in which the user
can write the rules in a very simple IF-
THEN-ELSE-ENDIF formalism. The right
pane is designed to support rule writing.
This, on the one hand, makes the work less
difficult and time consuming and, on the
other hand, controls rule consistency and
correctness of the formalism. The right pane

84

Figure 4. A screen shot of the compiler for acquisition phrase chunking rules.

of the compiler in Figure 4 contains two
clickable menus, the menu of tags and the
menu of expressions used in the rule
formalism. It is enough to double-click on
any of the selections in these menus to
transfer it into the text of a rule. The tool
would not let the user leave a compiler
without the "Check it" button click. This
button triggers a rule formalism check and in
case of a mistake displays an error
description message. After closing the
message box on the "OK" button click the
user will find the cursor right in the place
where a correction should be made.

In spite of formalism simplicity the rules
have a quite rich and flexible inventory of
"right hand side" conditions (different for
different compilers) that can provide for
rather fine (vs. coarse) analysis. For
example, in Disambiguator one can check a
context within a five-string window with the
tag in question in the middle. The context
could be checked either in terms of tags
and/or word strings and/or border marks
from the tokenizer. It is also possible to
check whether a context tag/word belongs to

a certain list, etc. There is one more compiler
that belongs to the Analyzer, the Head
compiler, which acquires rules for
determining agreement features between the
predicate and its first case-role (the subject).

Predicate-argument grammar acquisition
tool
As was mentioned above, the predicate
lexicon is the most important part of the
APTrans knowledge. Figure 5 shows the
interface of the main tool for predicate
acquisition. It is directly linked to the main
application engine, which relies on linguistic
knowledge contained in the lexicon. The
interface allows for editing any of the
lexicon fields, searching any word by its
prefix or semantic class, and propagating
changes from one field to another. For every
language the interface has a built-in
morphological generator that automatically
generates all the predicate word forms,
which are used in patent claims in that
language. The interface has a standing menu
of semantic classes and case-roles. The
acquirer can customize the menu of semantic

85

Figure 5. A screen shot of the interface of the predicate-argument grammar acquisition
tool.

classes. Most of the fields of a new predicate
entry are automatically filled with default
fillers after a semantic class is acquired. The
acquirer then checks them and edits if
necessary. The interface is programmed so
as to keep the acquirer "on the right road"
by means of different hints and warning
messages.

With this interface predicates can be
either acquired one by one or automatically
downloaded from the tagging lexicon
acquisition tool.

The stage of determining predicate-
argument structures that includes assigning a
case-role status to every phrase chunked
earlier (semantico-syntactic analysis) is
currently done interactively through the
Main Application Interface as described in
Sheremetyeva and Nirenburg (1999) and
draws heavily on the predicate lexicon. The
traces of this phase of analysis can be

controlled through the Main Application
Interface.

Transfer compilers are still under
development and we will skip them here,
but generator compilers are reused from our
previous application and can be mentioned.

The main tool for the MT generation trace
is the Generator Interface that is used to
control the correctness of the internal
knowledge representation tree, linearization,
grammaticalization, and final output text in a
target language.

A number of compilers designed similarly
to those of the analyzer acquire generation
rules. Linearizer compiles the rules that
specify the order of the words in the output
TL text. Grammaticalizer is for writing
cohesion rules and rules to assign
morphological features to the TL lexemes,
insert punctuation, and generate an MT output
text.

86

APTrans in a Classroom
Actually, the description of tools given in
the previous sections gives some hints
about for what and how to use the
APTrans application and its development
environment for the teaching of Machine
Translation to Computational Linguistics
students. Extreme user-friendliness of the
tool interfaces makes the software rather
suitable for the classroom. First of all an
instructor might show the application just
as one more example of an MT system to
familiarize students with the problems of
MT software, linguistic error analysis,
specificity of the sublanguage approach to
MT, etc. Another way is to use APTrans
developer tools to participate in building
an MT system. One might either create a
toy MT system or concentrate on solving
particular MT problems. For example,
based on the tagging lexicon acquisition
tool and analysis compilers, exercises can
be developed, using a specially designed
test suit, to investigate the problem of
coverage and knowledge necessary for
disambiguation. A student can experiment
with changing (inventing) tags to see
whether a "deeper" description of lexical
units gives better resolution. Compilers
can also be used to teach students to write
formal (programmable) grammar
descriptions, etc.

Conclusions

We suggested using the APTrans application
and its developer tools as part of Machine
Translation learning environment. The tools
described in the paper are mainly targeted to
Computational Linguistics students and do
not require programming skills so that
students could concentrate on linguistic
problems of MT. It looks like it is linguistic
issues that now, with the advent of advanced
computer technologies, are the main
obstacle in developing high quality MT
systems. The APTrans MT learning
environment is extremely user-friendly and
has the features of modularity and
reusability. The tools can be used for
different languages.

Acknowledgments. Thanks to Victor Raskin
and Katrina Triezenberg for their contribution to
the presentation of this paper.

References
Balkan, L., D. Arnold and L. Sadler (1997)

Tools and Techniques for Machine Translation
Teaching: A Survey. http://clwww.essex.
ac.uk/group/projects/MTforTeaching/index_l.
html

Beyer, H. and K. Holtzblatt (1998) Contextual
Design: Defining Customer-Centered Systems.
Morgan Kaufmann: San Francisco, CA.

Blanc, E. (2001) An Interactive Hypertextual
Environment for MT Training. MT Summit
VIII Workshop on Teaching Machine
Translation, Santiago de Compostela, Spain,
pp. 51-55.

Clavier, V. and C. Poudat (2001) Teaching
Machine Translation in non Computer Science
Subjects: Report of An Educational
Experience within the University of Orleans,
MT Summit VIII Workshop on Teaching
Machine Translation, Santiago de
Compostela, Spain, pp. 19-23.

Dix, A, J. Finlay, G. Abowd, and R. Beal (1998)
Human-Computer Interaction (2nd Edition).
Prentice Hall Europe: London.

Hackos, J. T. and J. C. Redish (1998) User and
Task Analysis for Interface Design. Wiley:
New York.

Kenny, D. and A. Way (2001) Teaching
Machine Translation & Translation
Technology: A Contrastive Study, MT Summit
VIII Workshop on Teaching Machine
Translation, Santiago de Compostela, Spain,
pp. 13-17.

Pérez-Ortiz J. A. and M. L. Forcada (2001)
Discovering MT strategies beyond Word-for-
Word Translation: A laboratory assignment.
MT Summit VIII Workshop on Teaching
Machine Translation, Santiago de
Compostela, Spain, pp. 57-60.

Sheremetyeva, S. and S. Nirenburg (1999)
Interactive MT as support for non-native
language authoring. Proceedings of MT
Summit VII, Singapore, pp. 324-330.

Somers, H. (2001) Three perspectives on MT in
the classroom. MT Summit VIII Workshop on
Teaching Machine Translation, Santiago de
Compostela, Spain, pp. 25-29.

87

