
[Proceedings of the National Symposium on Machine Translation, UCLA February 1960]

THE COMIT SYSTEM1

Victor H. Yngve

Massachusetts Institute of Technology

About two years ago a need was felt at M.I.T. for a program-

ming system specially tailored to the needs of mechanical translation.

Our idea was to provide an automatic programming system that would

make it easy for the linguist to write his own programs. We conceive

of the computer as having a place in a research effort as a tool for

increasing the productivity of the people associated with it, not as a

hard master requiring research workers to understand and control

countless details that are of little direct significance to their work.

Consequently, we aimed at relieving the linguist of many details like

packing text into 36-bit registers; shifting letters into certain chosen

locations in registers; allocating storage in an economical way; lining

everything up and squeezing it through an accumulator that was design-

ed for arithmetic; calculating addresses when they matter to no-one,

but are required for proper computer operation; or spending time

worrying about achieving the fastest program or the most economical

use of high-speed memory. In other words, we hope that the linguist

can concentrate on problems central to mechanical translation and be

able to write programs about as fast as he works out linguistic solu-

tions.

Our decision to invest a substantial amount of time in designing

and writing an automatic programming system was based on a very

practical consideration. We believed at that time, and still believe,

that we are in a phase of mechanical translation that will be charac-

terized by the production of many and diverse approaches to the

problem. We consider it to be desirable to try out as many of these

approaches as possible and to subject them to the most searching

tests of quality and fidelity that can be devised. With an adequate

automatic programming system, the cost of making such experiments

1 This work was supported in part by the National Science Foundation;
and in part by the U.S. Army (Signal Corps); Air Force Research
Division, Air Research and Development Command; and the Office
of Naval Research.

439

Session 10: PROGRAMMING

is reduced and, more important, the time lag between conception

of a scheme and a final running program is considerably reduced.

G.H. Matthews and I worked up a set of specifications for

what we thought a programming system should offer the linguist in

the way of facilities. We started from a notation very much like the

notation used by A.N. Chomsky in his transformational grammars,

but we added many features for convenience and very carefully de-

fined the meaning of each aspect of the notation in terms of the

computer operations that were to be carried out. We found that we

had to add a method of addressing the grammar rules, a method of

making program branches, a powerful set of subscript conventions,

and many other features. We tried to design the notation to be as

natural and simple as possible so that it would be easy to learn and

easy to use. At the same time, we tried to foresee as many types

of programming situations as possible and tried to provide for them

in a clear and obvious way.

We took our ideas to the M.I.T. Computation Center, and there

we found Sheldon Best, Arnold Siegal and Frank Helwig, who became

interested in providing our notation with an automatic programming

system. Together we spent several months going over the specifica-

tions and improving and clarifying them. Some valuable new features

were added. Finally, we had the notation in a satisfactory form and

programming began. Altogether about twelve people have contributed

to the COMIT system, as it became called, and perhaps eight man-

years have been spent on it. This work has been divided about

equally between the two groups. Now, about two years later, the

programming and coding are finished, and the system is undergoing

final checkout. Actually the system consists of two separate pro-

grams, a compiler and an interpreter, each occupying over 8, 000

registers in the IBM 704 computer.

From the user's point of view, however, there is only one

system. He writes his program in the convenient COMIT notation,

and submits it along with the text or raw material that his program

is to work on. He gets back his results in the form that he has

specified in his program. If he wants to run the same program again,

with perhaps a different text, he merely saves the binary version of

his program produced by the compiler, and resubmits it with his new

440

Session 10: PROGRAMMING

text for running with the interpreter only. The advantage of the

compiler-interpreter split is that the compiler can translate the

problem-oriented COMIT programming language into a machine-

oriented binary version which will run much faster with an inter-

pretive program and make much more efficient use of memory space.

Thus, although the whole system is designed with the primary objective

of conserving the linguist's time by providing him with a powerful

research tool that is easy to use, the programs will in general be

fairly efficient and fast.

One of the easiest programs to write in COMIT is a dictionary

routine. One merely has to list the words on punch cards and submit

them to the compiler. Alphabetization is taken care of automatically.

There would be room for about 4, 000 words in core storage. A

binary search is provided so the program would run quite fast. One

could write a dictionary program in machine code or in other pro-

gramming languages that would beat a COMIT dictionary both in

vocabulary size and speed of running, but probably in no other system

could a dictionary of this size be compiled with as little expenditure

of effort on the part of the linguist.

In anticipation of translation programs, one will probably want

to provide the dictionary entries with grammatical codes. This can

easily be done by using the subscript facility of COMIT. Subscripts

can be represented by nearly any mnemonic abbreviation, number,

or word, that suits the fancy of the linguist. Subscripts are then

automatically encoded by the compiler in a very efficient manner.

I shall not go into details about how easy it is in COMIT to

replace, rearrange, delete, or add linguistic material; how to make

use of the built-in random element in the program in linguistic

research; how easy it is for a COMIT program to write another COMIT

program; or indeed another program in any notation. Material has

been published that goes into these details.

A number of programs have already been written in COMIT in

spite of the fact that they can not yet be run on the computer. Many

of these programs have been written as exercises to aid us in learn-

ing how to make the best use of our new tool. Considerable research

in programming methods in COMIT has been carried out by G.H.

Matthews and me, and we have presented several short courses in

441

Session 10: PROGRAMMING

COMIT. One of the exercises consisted in programming in COMIT

a large portion of the General Problem Solving Program (GPS) of

Newell, Shaw, and Simon, discussed by them in a recent paper.2 On

the basis of this exercise, it is estimated that the entire GPS routine

would require only about 200 COMIT rules, whereas it requires about

1,000 instructions in International Programming Language (IPL), the

programming language used by them. Whether COMIT is any more

convenient for such programs remains an open question, but many

people around M.I.T. are finding it convenient for a variety of unusual

uses. It has been used in a program for the automatic control of

milling machines. It is being used for a theorem proving routine. It

is being used in programs to do algebra and calculus. Several game-

playing programs have been written or are under consideration. One

of them, a Scrabble program, written by Bill Cooper, looks as if it

would play a very good game. Kenneth Knowlton of M.I.T. wrote an

information retrieval program in COMIT during a summer spent at

IBM at San Jose.

The availability of the COMIT notation has already had a pro-

found effect on mechanical translation research. It has been possible

for us to write down in an unambiguous fashion our ideas on transla-

tion. This has aided greatly in clarifying our own thoughts and in

communicating them to each other. There is nothing like a clearly

written program to overcome terminological barriers to communica-

tion. We have come to realize the very great importance of an ade-

quate notational system.

The availability of the COMIT notation has also provided us

with a frame of reference within which to work. G.H. Matthews has

written several sentence-recognizing programs in COMIT. The

work of David Dinneen on French has been within the framework of

COMIT, and Anthony Phillips has written a German-compound-

splitting routine in COMIT.

2 A. Newell, J. C. Shaw, and H. A. Simon, "Report on a General
Problem-Solving Program", Preprints for the International Conference
on Information Processing, UNESCO, Paris, June 15-20, 1959.

442

Session 10: PROGRAMMING

For those of you that want to use COMIT, I am happy to

announce that it will be ready soon. It can be used on any IBM 704

with a 32, 000-word core memory. We will either distribute it

through the SHARE organization, or will undertake the distribution

ourselves. In any case, if you want it, you should write us. We will

be happy to send you, when it is ready, a copy of the new programming

manual, being prepared by John Viertel. There is also a new refer-

ence manual being prepared by Frank Helwig and Kenneth Knowlton.

443

