[From: IBM Technical Newsletter No.9, January 1955]

RESEARCH IN LANGUAGE TRANSLATION
ON THE IBM TYPE 701

Peter Sheridan
IBM Scientific Computing Service

Introduction

January 7, 1954 marked the successful culmination of a joint project of the
Institute of Language and Linguistics of the Georgetown University School of Foreign
Service and IBM: one language (Russian) was successfully translated into another
(English) by means of a high-speed electronic digital computer.

For over the past decade a small group of men in various institutions throughout
the country had been engaged in research on the practicability of using high-speed
electronic computing or data processing machines for language translation. Finally
about two years ago, a staff member of the Institute of Languages and Linguistics of
Georgetown University devised a systematic method for converting the meaning of words
in one language into words of another language without the need for pre-editing or post-
editing text. * Though Russian into English translation was used as the model in the first
practical experiment, the Georgetown language conversion method can be applied almost
universally.

Briefly, in this system a rule-tag is attached to a normal sentence word, determin-
ing its position and exact meaning in a sentence. Six rule-tags in all were chosen,
specifically because they have a broader effect on language translation than all the other
rules that were studied. These rule-tags govern the transposition of words where that is
required to make sense, choice of meanings where a word has more than one interpretation,
omission of words that are not required for correct translation, and insertion of words
that are required to make sense. Though it is estimated that at least one hundred rule-
tags may be required to translate adequately scientific and technical literature in general,
the six selected rule-tags remain basic to translation.

Staff members of the Georgetown Language Institute proposed to IBM that their
practical solution to the language translation problem be adapted to the 701 computer.
Then under the sponsorship of the IBM program for endowed research in computation, '
work was undertaken at IBM World Headquarters on the enormously detailed problem of
programming the Georgetown linguistic solution into a meaningful program in the binary
language of the 701 computer.

* L. E. Dostert (Institute of Language and Linguistics, Georgetown University School

of Foreign Service), "An Experiment in Mechanical Translation: Aspects of the
General Problem."

In the first language translation demonstration in January 1954, a sample dictionary
consisting of 250 Russian words and their English equivalents, together with the rule-
tags which govern word choice and position, was stored on the surface of a magnetic drum
on the 701. The detailed instructions were placed in electrostatic storage. Two hundred
Russian sentences were then fed into the computer and printed out in correct English
translation at the rate of one full sentence every six or seven seconds.

I. Fundamentals of Language Translation Program

The systematic conversion of a given “source” language text into a desired “target”
language text involves two essentially distinct though logically interrelated programs,
which may be referred to as “lexical” and “operational” syntax. “Lexical” syntax
refers to discrimination between and recognition of the word elements of the source
language. “Operational” syntax refers to their subsequent manipulation in terms of the
grammatic-syntactic requirements of the target language. The term “word” refers to
any of the meaningful “strings,” or series, of alphabet symbols occurring as source
entries in an authoritative intralingual dictionary. Alphabet symbols include the actual
letters, punctuation marks, diereses and diacritical marks. The term “sentence”
connotes any meaningful string of words formed in accordance with the grammatical
rules of the language itself.

The Russian-English dictionary utilized in the 701 conversion program comprises
two types of source language words, that is, “complete” and “subdivided.” “Sub-
divided” words are those which occur in the dictionary as a separate root and ending.
Each of the two portions of a subdivided word is referred to as a “partial” word. The
root is the left partial, and the ending is the right partial. An example of a subdivided
word is

polyityichyeskyix,
which occurs under “p” as the left-partial word

polyityichyesk-
and under “y” as the right-partial word

-yix.

It should be noted that the term “subdivided” is applied to a source language word
only with respect to the program’s internal operation, that is, only after the word has
been read from punched card input and is being processed as datum within the machine’s
electrostatic memory. The machine recognizes the type of word only when reference is
made to the magnetic drum-stored dictionary.

A “complete” word is one which, as the name indicates, does not occur as a separate
stem and ending. Such a word, for example, is

yizgotovlyayetsya,
which occurs precisely in the form spelled out in the “y” region of the stored dictionary.
Each line of the dictionary includes the following material in the order mentioned:

Russian source language entry (complete or partial), successive alternate English
target equivalents, and a set of three syntactical codes. The English target language
equivalents have been restricted to two in number for this particular experiment. The
three syntactical codes, which will be referred to as “diacritics,” have the basic
functions of choice and linear arrangement of target language material.

When a Russian language word is looked up as a complete or subdivided sentence
item, its alternate English language equivalents are stored in a specially assigned region
of electrostatic storage and its associated diacritics are stored in another region. The
machine is programmed to remember which set of English language equivalents in the
former storage region is associated with any given set of diacritics in the latter.

Upon completion of this lexical syntax subprogram, the machine proceeds to execute
its operational syntax program of choice, rearrangement, insertion and deletion. (This
will be explained later in some detail.)

Three kinds of diacritics are associated with each Russian dictionary entry: two
are stored in the dictionary and the third is generated by the program. They include:

a) A “program-initiating” diacritic, or “PID,” which initiates the execution
of one of the six rules of operational syntax incorporated in the stored program.

b) A “choice-determining” diacritic, or “CDD,” further subdivided into a
three-digit “CDD;” and two-digit “CDD,” code. (The need for two choice-determining
diacritics is chiefly due to both forward and backward reference to the same item of
source language text.)

¢) An “address diacritic,” containing the initial full-word addresses ADD;,
ADD:; in electrostatic storage of both English language equivalents associated with the
PID and both CDD’s. This diacritic is essentially a “bookkeeping” feature.

II. Working Assumptions of the Program
The Machine

A total of 33 distinct operations may be performed on the EDPM Type 701 computer.
These operations include addition, subtraction, multiplication, division, shifting,
logical transfers, etc.

The primary unit of information in the 701 is defined as a “full word” which consists
of 35 bits (binary digits) and a sign bit, or 36 bits in all. Each full word may be further
split up into two “half words” which consist of 17 bits and a sign, or 18 bits in all.

Following is a brief description of the characteristics and organization of those
units of the 701 specifically involved in the execution of the language translation program.
1. Electrostatic Storage

Electrostatic (high-speed) storage of the 701 consists of a bank of cathode ray tubes.
One electrostatic storage unit can accommodate 2048 full words or 4096 half words. The
2048 full-word locations (cells) in electrostatic storage are identified by the negative
even integers from -0000 to -4094, and the 4096 half-word locations by the positive

integers from +0000 to +4095. The relationship between full and half-word addresses
is as follows: if “-2n” refers to a full-word location, then “+2n” refers to the left
half word and “+2n+1” to the right half word into which the full-word location may be
split.

Average access time to full and half-word information (consisting of machine
instructions or data) is 12 microseconds.

Although two electrostatic storage units are available, one unit only is used in this
pilot language translation program.

2. Magnetic Drums

The magnetic drum unit in the 701 consists of four addressable drums, each
drum accommodating 2048 full words of information. The full words on the drums are
addressable by a system similar to that used in electrostatic storage, except that there
is no provision for recognizing half words.

Because access to individual words on a drum is relatively slow in comparison with
electrostatic storage access, it is more efficient to use drums to store large blocks of
information. Average access time to the first word in a block, or “unit record,” of
information is 40 milliseconds. After the first word of such a block has been located,
the remaining words are read or written at the rate of 800 full words per second.

3. Card Reader

Cards may be punched (up to 72 columns) in any symbol desirable to the
programmer--usually alphabetic, decimal, or binary. Cards are read at the rate of
150 per minute. The card punches in alphabetic or decimal numerical code are
converted simultaneously to the computer binary code at full card reading speed by
providing a suitable “utility” program.

4. Printer

The 716 alphabetical printing unit of the 701 prints up to 72 alphabetic, numeric,
and special characters (in any desired format) at the rate of 150 lines per minute.
The Program

A seven-bit code is used to represent the alphabetic, numeric and special
characters in the translation program. Letters A-Z are denoted by the seven-bit
equivalents of (11-36),9, namely, 0001011-0100100; numerals 0-9 by 0000000-0001001;
hyphen (-) by 0001010=(10),o; blank by 0100101=(37),0; and asterisk (*) by 01001 10=(38);,.
Thus, a full-word location in storage may contain up to five alphabetic, numeric or
special characters in bit positions 1-7, 8-14, 15-21, 22-28 and 29-35.

Character Decimal Equivalent Seven-Bit Code
0 0 0000000
9 _ 9 0001001
hyphen (-) 10 0001010
A 11 0001011
Z 36 0100100
blank 37 - 0100101
asterisk (*) 38 0100110

Although a six-bit code would be adequate to represent any of the 40 alphanumeric
or special characters used in this program, seven bits have been allotted for the
following reasons:

a) The sign bit in a full word is reserved for various different tests in
dictionary search and operational syntax routines. Thus a maximum number of five
characters can be stored in a full-word location, using either a six-bit or a seven-bit
code.

b) It was decided that it would be useful to add a leading zero bit to each
six-bit character code. The presence of a 1 in this leading character bit position signals
the end of execution of an English language sentence print-out, causing the machine to
re-initiate the card reading and conversion routine for the next sentence to be translated.

¢) A seven-bit character code permits uniform spacing in a full-word
location. This is extremely desirable because of programming considerations.

Detailed statements of the working assumptions of the program follow.
1. Dictionary Storage
The Russian-English dictionary is stored on magnetic drums. Each line makes up

a drum unit record and has the following format:

a) Russian and English language word strings occupy integral numbers of
consecutive drum locations.

b) Spacing between Russian, English and diacritic strings is accomplished
by means of “null strings.” A null string is defined as a full-word location containing
Zeros.

¢) PID, CDD; and CDD, occupy two consecutive drum storage full-word
locations. The three-digit PID is contained in bit positions 15-35 of the first storage
location; positions 1-14 are occupied by zero bits. CDD, also a three-digit diacritic,
occupies bit positions 1-21 of the second storage location; CDD, , a two-digit diacritic,
occupies the remaining bit positions, 22-35.

d) Each line is terminated by means of two consecutive null strings. Each
line begins at the first full-word location following termination of the preceding line.

e) Any unused (non-significant) character positions in a dictionary-stored
Russian word entry are occupied by seven-bit coded zeros.

f) Similarly, any unused character positions in a dictionary-stored
English language equivalent are occupied by seven-bit coded blanks, subsequently
changed to zeros. (The Type 716 control panel is wired for zero suppression.)

g) The algebraic sign (+ or -) of each line is distributive, i.e., it
belongs to each and every full-word location defining the contents of that line. It is
determined in the following way: the sign “+” is associated with a complete or left-
partial (root) word; the sign “ — ” with a right-partial (ending) word. This distinction
of signs is useful at various stages of both the lexical and operational syntax subprograms.

Example 1. The line containing the Russian complete word entry
opryedyelyayetsya

appears as follows (each rectangle denotes a drum full-word location and the numerals below
each word its octal drum address):

—+"| Ti ﬂ T\ n P—I +
oprye | dyely ayets | ya000 | 00000 | isgde | termi]
3146 3150 3152 3154 3156 3160 3162

£ N O I e i 2 B e B
nedgd | 00000 | -d-g- | 00000 |O00*** *hak4 100000 | 00000 J
3164 3166 3170 3172 3174 3176 3200 3202

As stated before, each character is represented by a seven-bit code. The sign o
is used here to denote a coded blank. If only one significant English equivalent is
available (as in this case), it occupies the first of the ordered English equivalent
locations, Eng; . Eng, is denoted by “ -¢-0-.”

Example 2. The line containing the Russian left-partial (root) entry

ugl-

appears:

O A G AE FAE M
ugl-0 00000 | coalg 00000 | angle 00000 00121 | ***25 00000 | 00000
3262 3264 3266 3270 3272 3274 3276 3300 3302 3304

Example 3.

The line containing the right-partial (ending) entry

-a

MM A F L F

a0000 00000 | of000 00000 | ~g-g- | 00000 | 00131 22225 | 00000 { 00000 I
0002 G004 0006 0010 0012 0014 0016 0020 0022 0024

As may be easily verified, the binary-coded representation for the unit record in
Example 2 is the following:

appears:

gram | First | Second Third | Fourth Fifth

Addregss Character |Character | Character | Character] Character
3262 0011111 0010001 0010110 0001010 Q000000
3264 0000000 0000000 0000000 0000000 0000000
3266 0001101 0011001 0001011 0010110 0100101
3270 0000000 0000000 0000000 0000000 0000000
3272 0001011 0011000 0010001 0010110 0001111
3274 0000000 0000000 0000000 0000000 0000000
3276 0000000 0000000 0000001 0000010 0000001
3300 0100110 0100110 0100110 0000010 0000101
3302 0000000 0000000 0000000 0000000 0000000
3304 0000000 0000000 0000000 0000000 0000000

2. Sentence Read-

In

Each Russian sentence word read into electrostatic storage is separated from its
successor by a single null string, and two successive null strings terminate a sentence.
Again (see Address 3262 above), unused character positions in the last full-word
location containing a given sentence word are occupied by seven-bit coded zeros. There-
fore spacing between successive sentence words varies between 35 and 63 zero bits
(respectively 5 and 9 unused character positions), depending upon the length of the

Russian word.

3. Russian Word Look-Up

To facilitate Russian word look-up in the drum-stored dictionary, the first

character of each input sentence word is used as the argument of a “thumb index” table

of 26 full words.

Each word in the table contains the drum address and drum location

of the initial full-word location of the first Russian dictionary entry in that particular

alphabetic region.

Thus, if “X” denotes an alphabetic character 11< X < 36,

following mapping is given:

X —> D, L),

the

where Dy= address of one of the four addressable drums in the magnetic drum unit

(0128, 0129, 0130 or 0131) and L,= drum location (=2t, where 0000 <t <2047).

Since the binary numeric equivalents of A-Z are consecutive, reference to the
“thumb index” is virtually immediate. If “X” denotes the decimal equivalent of the
initial character of a Russian sentence word, then

-[T+(2X-20)], where T > 0 and even
denotes the full-word location in electrostatic storage containing Dy and Ay, in the
left and right half-word address positions respectively. (The address part of a half
word in storage is contained in the rightmost 12 bits.)
4. Data Storage

a) Each Russian sentence read into the machine is simultaneously converted from
standard IBM punched-card code to the corresponding string of seven-bit equivalents
and then stored in an electrostatic storage region beginning at - (S+2), where S > 0 and
even. (See paragraph 2.)

b) In the course of each look-up subroutine iteration, each Russian dictionary entry
to be examined is copied from its drum location(s) into an erasable-storage "comparison'
region of electrostatic storage beginning at - (C+2), where C > 0 and even.

¢) Immediately following the completion of a sentence-word look-up, the pair of
English language equivalent strings from the dictionary, Eng; and Eng,, and associated
PID, CDD, and CDD, strings are stored in electrostatic storage regions as follows:

'

1) Eng; and Eng; strings are stored in a region beginning at - (E+2),
where E > 0 and even.
2) Diacritic strings are stored in successive blocks of three full-word
locations. The j-th (j=1,2,3) word of the i-th diacritic block has address
-[D+6(i-1)+2j], where D > 0 and even.
Location
-[D+6(i-1)+2]
contains PID' in bit positions 15-35.
Location
-[D+6(i-1)+4]
containsCDD} 10 bit positions 1-21, and ¢DD; in bit positions 22-35.

Finally, half-word location
+[D+6(i-1)+6]
contains the initial full-word address, ADD], of Eng} in the English-equivalents region.
And half-word location
HD+6(i-1)+7]
contains the initial full-word address, ADP%, of Eng;.
Of course, ADD{= ~-(E+2}).
d) An erasable region of electrostatic storage beginning at location - (R+2) is
specially assigned for temporary storage of right-partial (ending) words during the
course of each ending look-up subroutine.

e) The erasable final-print-out region of electrostatic storage begins at -(P+2),
where P > 0 and even.

The basic operations of the machine translation program are indicated in the

flow chart in Figure 1.

Enter Program

!

Read and Convert
Next Sentence Cards

'

Lexical Syntax Subprogram

A\ 4

(search drum-stored dictionary for each
and every sentence word, storing English
equivalents and diacritics inte separate
blocks of electrostatic storage)

!

Operational Byntax Subprogram
(choice of meaning, insertion, deletion,
and rearrangement of English output)

l

Sentence Print-Out

Basic Operations of the Machine Translation Program

Figure 1

III. Lexical Syntax Subprogram

Following is a brief description of the basic logical functions and operations of the
initial lexical syntax subprogram of the machine translation program. The lexical
syntax subprogram is completed for each and every sentence word in the source
language before the operational syntax program controlling choice, rearrangement,
insertion, and deletion is initiated.

(1) Let X;X,...X,, wheren > 1

denote a source word, consisting of a string of meaningfully juxtaposed characters. As
mentioned before, an initial quick table, look-up search notifies the machine of the drum
address Dxl and location Axl of the first source entry in the X; region of the magnetic-

drum-stored dictionary. Since source and target words occupy integral numbers of
full-word locations in drum and electrostatic storage, and each full-word location
contains up to five significant alphabetic characters,the above character string (1) may be
briefly denoted by

(2) XXX,

whereiz 1, X} =A,B,C,...or Z, and X} = 0000000 only if j = 2.

If Y} Y3 YS Y, Yi denotes a dictidnary-stored source entry, where X} = Yj, the machine
is then programmed to run a character-by-character comparison test on both input and
dictionary strings.

Character extraction for purposes of comparison is accomplished by means of the
EXTRACT operation:

3) -EXTR []

The EXTRACT operation is a process of logical multiplication. The contents of the
accumulator register are matched with the contents of the electrostatic storage location
specified by the address part of the EXTRACT instruction. For each bit position
containing a 1 in both the accumulator and in storage, a 1 is placed in the bit position
in storage. The remaining bit positions in storage are filled with zeros.

In order to extract a character from a five-character string in storage location -U,
the entire contents of -U are placed in the accumulator. The appropriate extractor, or
“mask,” is then placed in location -V. The “mask” has 1's in only those bit positions
of location -U that are being compared at the moment. Thus if the second character in
location -U is to be extracted, the mask

0000000 1111111 0000000 | 0000000 | 0000000

is stored in location -V. The sequence
@ -RADD U
-EXTR V
then stores the desired information in location -V.

A set of five character extraction masks are stored permanently in locations

®) -(M+2k), where k=1,2,3,4,5
The masks may be denoted by
() _ Z¥ 2§ 7§ 2% 28, where zi= { LLILLL 4f i
It for some i, j
{7) Xb =Y} forall h<iandk=1,2,3,4,5, or for h=i and eachk < j
but X;= 0000000,

look-up of a complete or right-partial (ending) sentence word has been achieved, since
dictionary entries are stored in ascending numerical order and every sentence word
occurs either complete or subdivided in the dictionary.
If, on the other hand, (7) holds, but
(8) X! - Y} # 0000000,
then either
a} Y; and X| disagree alphabetically
or
b) Y¥Y! is a coded hyphen (0001010).

If case a) holds, the machine is programmed to skip to the next dictionary source
entry. If case b) holds, the machine is programmed to remember the initial drum
locations of Eng; Eng2 and diacritic strings associated with the possible root encountered,

and continue searching the rest of the X} region for a possible longer root. Since the

last root encountered is the longest, it is necessary to retain only the last occurring
English-equivalent and diacritic references.
Having looked up the longest word root, the machine is programmed to search for

the ending (right-partial) entry whose first character is Xi. Before the ending look-up

subroutine begins, however, the ending character string appearing in the original

subdivided word must be repositioned so that the j-th character becomes the first, the

jtl-st the second, etc. This is accomplished merely by shifting the contents of the full-

word location(s) containing the ending character string 7(j-1) bit positions to the left.

The ending character string is then stored in the region of storage set aside for the

temporary storage of right-partial words during each ending look-up subroutine:
-(R+2), -(R+4),...

As soon as each source sentence complete and subdivided word has been looked
up and its associated English equivalents and diacritics read from the drum into
electrostatic storage, a small subroutine writes a special exit-transfer test value
(a 1 in the leading character bit position) in the first full-word location following the
last diacritic block in the diacritics region of storage. This “terminal” diacritic
value is later recognized by the machine as signalling the end of the operational syntax
subprogram.

A flow chart of the lexical syntax subprogram is shown in Figure 2. It should

be noted that aIand; Zal-. in Figure 2 are equivalent to D, and L,, resepectively, in the
text.

R w NG TR At Tar

Nl R A

L LT FRTS B
AR LI0E

MR T
Wik AL

RE LR H LR

FELL Wi HT MR AR CFEy FPR A
LIRRUIY L [XF IR

L1} Ty
v

oM AN
TR HEXY NFUY AIRD LELL FOR D
!

YT BRI TR R
LT borw WA CGHD EW b h
LN RS ELHEN A JHE R) .

MEKT S0 MONMY e o F
s +

pev— (L] 154 T y!

¥
MEMEY JHPUT wOAR FUr] ABMRELY

MOOIT 01 w24l (F 11 ADDRELS

18 +

TESE RIA 151 CHAR ALANST

O I5F CHIT

-
] “b gLkt pale (a1
WARi4 L FEH OB Feb PRt il FRLL kWA
N |
PE VRN Akl
et ek s L
] .
b 4 W M
SEGRE pAIMASTUR C41 I RRR QR P Sl ekt InNimg ALl T WEZE
RILHY HALE TAEV-R] WIRE | N0 0P [HF Bl W&k T AdRD a8l
] | S
CORE AL “s BEioMi Dfagt de pst 2
THOTELOFASFIEY Vv CHLR i NPT iR
d LHE G JsthD
MEILHE B | ARD 4T IDRY Bug fg RO DHORINC
©OCDMPRRLON iy BN AITH LY D SIERING
; 1 F R0 RACAILE [
ML AT NC) ACRD 1SE CEL HIGELSSS L A o WD & 3
1 M .
3 HEE LT G i
—) IRCUAITE PR v 15T CHAR FATRLE ;;51_[::'::32::&'“ “:"FNN VEAR: W
FHIN AMD [(W08 BRI TINE ! -
?
(FIRA01 ke DndR ene b JF NP INFHY RIRD hEh [NWELLE WONT LS (177 HALY FEHPRL
4 WOED CRIE ARD TESE UGB BN WRGEY SHEUT WEHD ENLEER REGivhhi, AITH IRPLT W
ACCUMUTAEOH gLogx Lowr cle; & BACRNC LET] CONTLNNG HPPHEN Shifl
t BLOCH COPY [kt A14 HEMBNeRG CELLS BEFT 500 InAT 15 CHAR
' . FO7 EwmG M OLT RS et CHAR POSTIDN
P LHAR OF iNPGD AGRD TR [Tl] .)
FLEM BIFFEREMCE EDTAHIN THIS AND ot EL lf‘-’l"i S OOF ST CRIL 8¢
CHAR 0F [HUL WORE CELL CORWECPLNTNG wpat INPY| WD
L 4
) - AV gay] PRRTG WERD
16 TWIERINCE TEMISNG CHAR KRS #ORIERINEG & OROMMG O CILE B FERE

CHER AGREEMERY S0 TESY wm

{HAR OF D01 wGRT CELL POR
[IrSTEMCL 0 HTAHER

ave CwpR 06 DT wtn (R

L) I L HYPHIR
Kb CAAR DF DY OKELL €5 HOT : © e TAHL et WP (R ADGHESS -
B oarimle HINCE WL R PML BCRLL - . CORDERTION NG L SRR RO INPDY
WK i THTS SRaRET|ER POSITAN PR VIS
L]
DGRESS PARTS 01 Wi1RRY 1N
e o g e s
LIS OF LT WORS QM M b '

RUCLITHL

TPy 150 CINE OF NEXE BICT WORD ‘ § SN (KGN BLERESS BN 1 ODATION
BN TESL FOR BF g BECTINGING TG 0 EFT HALT
FELAL WORD O LN ISH 4 GATRITIE

#OEOA LGP ROG iR
I mirt M

RICT WOEL END

M T A : | N— Nt ki RigMENT

R SR ST TRIN TN T T L
] , [TUR RS

itk -SE PANTHL w8t Tl

WOTET g 7E ENLEISH
Epfiw LORY T3S

Er AL BHIETCILE
[BITL B AHEY

A 1F -
i " -
TOFY &1 yRCTE NG CHI1Y ©OSRIP 10 MERT DT AGRD ANT
e et wolD Link : - . . .
INLIANE HEE i] NORE
[SSRNC IR R
[]
INTIAFE iR EHEl EATHAL &
Fiyld o iR ERCSiR b *
11l f f . Al FRRT LR J (ST G B] AGNLEMLNY
tlak. 1 wr dwiE R0 PARY CRLED nai ke .01 IR ey v} I
. - e CRNSARL vk Fadke [OPERDA
LRLLOAN[TERE PER [SER ’ WO 8N (T &R _9 o ol
1 N . Harry
RTINS verlesp Dl fry . L
i e . - Wi} LLAEENIHT FDEE ENAHEATI
Bron 2 DOAHE LSREE A 1 BLCT DT AGRD AND Wi
WA phe WL ERDTT . - - .
FTre ST b ERD
.
*
L oMEET PERTAL WURD
DFERATHINDY Srwidx CHYL SNE DU AN
PRELHAY TirE AN
* -

Lexical Syntax Subprogram

Figure 2

IV. Operational Syntax Subprogram
Rules of Operational Syntax
Following are the six rules of operational syntax programmed into the machine.

These rules are in virtually the original language of presentation of the problem.
Rule 1
If PID associated with a Russian dictionary entry is “ *** " then adopt English equivalent
I of alternative English language equivalents, retaining order of appearance of output
with respect to previous sentence words.
Rule 2
If PID is “110,” is CDD, associated with the first preceding complete sentence word
encountered “21”? If so, reverse order of appearance of words in output (i.e., word
carrying “21” should follow that carrying “110”); otherwise, retain order.
In both cases, adopt English equivalent I associated with “110.”
Rule 3
If PID is “121,” is CDD; of the first following complete, subdivided or partial (root
or ending) sentence word encountered “221” or “222”? If it is “221,” adopt English
equivalent I of word carrying “1217; if it is “222,” adopt English equivalent II.
In both cases, retain order of appearance of words in output.
Rule 4
If PID is “131,” is CDD, of first preceding complete sentence word or either portion
(root or ending) of first preceding subdivided sentence word encountered equal to “23”?
If so, adopt English equivalent II of word carrying “131,” and retain order of appearance
of words in output; if not, adopt English equivalent I and reverse order of appearance
of words in output.
Rule 5
If PID is “141,” is CDD; of first preceding complete sentence word or either portion
(root or ending) of first preceding subdivided sentence word encountered equal to “241”
or “24277 Ifitis “241,” adopt English equivalent I of word carrying “1417; if it is
“242,” adopt English equivalent II.
Rule 6
If PID is “151,” is CDD; of first following complete sentence word, or either portion
(root or ending) of first following subdivided sentence word encountered equal to “25”?
If so, adopt English equivalent II of word carrying “151”; if not, adopt English equivalent
L

In both cases, retain order of appearance of words in output.

Example
The following example illustrates how the rules of operational syntax are applied

in the computer language translation program.

Source Sentence: Vyelyichyina ugla opryedyelyayetsya otnoshyenyiyem dlyini dugi k radyiusu.

Analysis:
English Equivalents

Russian Item Eng; Eng, PID CDD; CDD,
Vyelyichyina Magnitude =~ ------- ook etk ok
ugl - coal angle 121 k= 25
-a of e 131 222 25
opryedyelyayetsya is determined ------- Rk ek ok
otnoshyenyi - relation the relation 151 e ok
- yem by - 131 ok
dlyin - length - ek ok
-1 of L 131 25
dug - arc = memee—- skskesk skskek sksk
-1 of L. 131 ek 25
k to for 121 e 23
radyius - radius ~ --—---- k221 ok
-u to 131 ek ok

Target Sentence: Magnitude of angle is determined by the relation of length of arc to radius.

Programming Assumptions

An intensive analysis of the Georgetown linguists' statement of the rules of
operational syntax was made in conjunction with a detailed study of the structure of
diacritic strings corresponding to a limited (ten) but syntactically representative Russian

sentence sample. The following programming assumptions were subsequently evolved
and confirmed for a larger sample:

P1) For eachiz 1, PID’ = *** 110, 121, 131, 141 or 151,

P2) If PID' = 110, CDDY' £ 21 (j 2 2)

P3) If PID! = 121, then for some j 2 1, CDD{*! =~ 221 or 222.

P4) If PID' = 131 but < 0, then CDDS™ # 23,

P5) If PID' = 141, then for some j 21, CDDi™’ = 241 or 242,

P6) If PID! = 151, then CDD™ # 25,

These assumptions together with the rules stated before led to the operational
syntax subprogram flow charts shown in Figures 3A, 3B, and 3C. These charts
represent completely the phase of programming related to language structure.

bl

Dictionary Syntax
Subprogram

Read and Convert to
Binary Code Next

v

Russian Sentence

Initialize for

Operational Syntax

t

Print Routine

+

A

If Terminal Diacritic

 Ea——— Test for Terminal

Diacritic

Attained, Write Exit-
' ?| Transfer Location at End

v

of Print-Qut Region

Is PID' = #»= ?

Choose Engl

Write Eng}™ Eng,

Is PID' = 110 ?

NO
ES

Is CDD; %= 21 ? { Is PID'=121 ? !

ES

Choose Engj &
Write Engi{ Engj™!

!

NO

Choose Engj &
Write Eng}™ Engl

L

Modify Diacritic
Index i—i+l

]

Operational Syntax Subprogram
Figure 3A

NGO

Us PID' = 121 7 _j
J YES

| Is CDD!* 1= 2213

YES

Choose Engj
Write Eng}™ Eng}

GS CDD!*"= 222 7

NO

+ /\

YES NO
Choose Engi & I\.dodif‘y
Write Eng!™* Eng} ”1"{ i+2

W
o

NO , & — —— ==

Is PID' = 131 ?)LEPID =141?:

YES - T T
Is PID' £ ?

\

Is CDD}™ = 23 ?

YES/\N?

Is CDD%?=231

HES—K'N_Q\L

Choose Eng; &

Is PID %47

. - write Eng}! Engél
| /\—_ S Fosee T

[s CDD% % =239

Write Eng} Engi|'

NO

Choose Engi & Is PID"" 14 ¢
Write Eng;™ Eng}
Pl
Choose Engl &
Write Eng] Engi: Y
< y Choose Eng, &
Write Eng}~'Eng}
!
< N
Choose Eng; &
Write Eng| Engj~*
<]
T,

e.____.._l

Is CDD} ™ =231

YEsﬁ-/;_

Choose Eng; &

Write Engi'Eng}y

—
Choose Eng! &
Write Eng) Eng}-!

odify Diacriti
Y

¢ |

“Index i—yi+l

Operational Syntax Subprogram

Figure 3B

y

&y Test for Terminal Diacritic

(See Fig. 3A)

NO

NQ

[Is CDDY 3 = 2417 [

yes /__NO

Choose Eng' &
Write Eng;~iEng}

J

3 Choose Eng; & |

Write Eng} 'Eng!
o]

W
Is PID'*147
£ 7 -
2 ¥
lis CDD}* =252 | . Is CDD}"2=25?

vEs /__No YES NO
v _ L }/ _
Choose Eng, & Choose Eng; & Is PID!*3 17

Write EngiEng}

. Write Eng)™Eng;| + -
] __ Is CDD¥3=251
Choose Engi &) W
YE NO Choose Eng} &

Write Eng\™Eng) Is CDD4*3=257
13 ! Write Eng|™ Eng] { vE NO
— '
Choose Engi & y
it 1 1
Write Engj El‘lgz Choose Eng’, & Choose Eng; &
& |
M | Write Eng Eng) | |Write Eng} *Eng!
[¢ Ny v
Choose Eng, &
Write Eng}Eng)
&] b4
-\ .

Modify Diacritic |_ s, Test for Terminal Diacritic

Y

Index i—yi+l (See Fig. 3A)

Operational Syntax Subprogram

. Figure 3C

Except for some rather intricate bookkeeping routines, actual instruction-coding
of the reformulated rules was straightforward.

Upon termination of the operational syntax subprogram a special exit-transfer location
is written at the end of the print-out region in storage. A special exit-transfer test value
contained in this location causes the machine to reinitiate the card reading and conversion
routine for the next sentence to be translated.

V. Utility Programs

Reading Program

Sentences are keypunched by the 026 Printing Punch in the standard IBM punched-card
code in columns 10-44 and 46-80. The printed interpretation is placed at the top of each
card. Columns 9 and 45 contain the algebraic signs of the full-word values contained in
the left and right-half card rows.

In the standard IBM punched-card code, each alphabetic character is represented
in a single column by a double-punch consisting of a “zone” punch in either the zero,

11 or 12 row, and a numeric punch in one of the remaining rows. Figure 4 shows how
the numerals 0-9 and the letters A-Z are represented on a standard IBM punch card.

muann
mannnm
ponopooneoooonfooooonoocoocoooooegooonaceacenoooancoooced FERAREINoo000000 00N
(RRR R RN SRRl RRR R RN RN AR RR NN RN RRT ARARRRERE IRRRRA SRR RRRRRRARERRRRRRRRRN
227r22222222z2222W2222222222222222222222 022222222 022222222222 2220222222222222122
333333333333333330933333323333323333323333322333333 03233933 039239393333333333333333
R RNy Ry Ry Ry Y Ry Ly Y LRy RNy YR YRR

/ 0123456789 ABCDEFGH I JKLMNOPGR STWV WXYZ

5555555559555555555055555559359555555555555@5555555505555555M5595555555555555555%
666666666666666666G6CEl6666 8666 666666666566 656666666 6666666U6666666666666666666 '
IR RN R E RN R R] AR RN R DR R ERREEE] FRRS RN IRRREEEE LERE RS EEERRRERED]
gasoasasaacocasasososelsornsnaposapasnsoascasBusoznosolloseacotW30aEatab08E383388
9999999539 9999999959F99999999999999999999999999999993999990995999999599999¢%
Vrads el o ARRUNS

MHBRTHHAN R DABENINSNL RNBADUA UGS T HANMNUM NS U NNV STIN AN NS BTN

M 5680 LICENSLE FON USE UwOLR PATERT 1777 492
" "~ "— - i

-
oo

"N

9
3
™

Figure 4

It may be observed in Figure 4 that the decimal equivalents (11-36) of the alphabet
letters may be obtained by adding a 10 to the numeric punch value when the zone punch is
12, a 19 when the zone punch is 11, and a 27 when the zone punch is 0.

Conversion of each alphabetically punched sentence card occurs as follows. The
machine is programmed to scan across the card and convert successive 5-column
fields, storing the results in successive full-word storage locations.

In a 5-column card field there are twelve 5-bit arrays - one array in each card
row. Each 5-bit array falls in the range of values 00000-11111. Therefore each 5-bit
array may be used as the argument of a full-word table look-up, defined by the simple
transformation
(1) bybybsbsbs —~, 000000b; 000000b, 000000b; 000000b, 000000bs

When a sentence card is read, each 5-bit array in a 5-column card field is
transformed into a 35-bit array as defined by (1). Associated with each 5-column card
field is a double-punch blank-column (DPBC) register, a numeric conversion register,
and three “zone” registers.

The DPBC register stores the sum of the functional values (1) corresponding
to the arrays in rows 9-1. If a card field has been punched alphabetically in each

column (zone punch and a numeric punch), after card reading of rows 9-1 the contents
of the DPBC register will appear as follows:

0000001 0000001 | 0000001 | 0000001 0000001

The numeric conversion register stores the 35-bit numeric conversion of a five-
column field. This is obtained by summing successive partial sums of the functional
values (1) corresponding to the arrays in rows 9-1. Thus if a 5-column card field
contains the numeric punches 58638, the contents of the numeric conversion counter
will appear as follows:

0000101 0001000 | 0000110 0000011 0001000

The “zone” registers are reserved for storing the functional values (1)
corresponding to the 0-row, 11-row, and 12-row arrays.

Since the 0-row is punched for the numeral zero as well as for the alphabetic
characters S-Z, provision must be made for the machine to discriminate between these
two cases. This is done by using the contents of the “0-row” register as an extraction
mask with respect to the contents of the DPBC register.

The 0-row extracted value of the DPBC register is multiplied by 27. The contents
of the “11-row” register are multiplied by 19 and the contents of the “12-row” register
are multiplied by 10. All three products are then added to the contents of the numeric
conversion counter to obtain the final conversion for the 5-column field.

The above outlined basic conversion cycle is repeated for each sentence card. A
blank card is used to separate sentences. When the machine encounters the blank card,
it transfers control to the lexical syntax subprogram.

Each binary card image is reconverted to a decimal card image which is checked
row for row against the original “built-up” decimal card image. Sentence loading is

thereby checked during each card-reading cycle.
Printing Program

The 716 alphabetical printer unit is programmed to print out 14 full-word locations
of translation per line without the “echo-checking” feature, which is unnecessary in this

program. Part of the printing routine, that involving the construction of each decimal
card image to be printed, is also utilized in the reconversion-checking subroutine of
the reading program.

ACKNOWLEDGMENT

The author wishes to express his deepest gratitude

to Professor Leon Dostert and Dr. Paul Garvin of
the Georgetown Institute of Languages and Linguistics
for their splendid cooperation in connection with every
detail of analysis and programming relating to this
joint project. Grateful acknowledgment is also made
to Mr. Tom Steel for his very valuable assistance in
connection with the input-output conversion routine.

