
[From: IBM Technical Newsletter No.9, January 1955]

RESEARCH IN LANGUAGE TRANSLATION
ON THE IBM TYPE 701

Peter Sheridan
IBM Scientific Computing Service

Introduction
January 7, 1954 marked the successful culmination of a joint project of the

Institute of Language and Linguistics of the Georgetown University School of Foreign
Service and IBM: one language (Russian) was successfully translated into another
(English) by means of a high-speed electronic digital computer.

For over the past decade a small group of men in various institutions throughout
the country had been engaged in research on the practicability of using high-speed
electronic computing or data processing machines for language translation. Finally
about two years ago, a staff member of the Institute of Languages and Linguistics of
Georgetown University devised a systematic method for converting the meaning of words
in one language into words of another language without the need for pre-editing or post-
editing text. * Though Russian into English translation was used as the model in the first
practical experiment, the Georgetown language conversion method can be applied almost
universally.

Briefly, in this system a rule-tag is attached to a normal sentence word, determin-
ing its position and exact meaning in a sentence. Six rule-tags in all were chosen,
specifically because they have a broader effect on language translation than all the other
rules that were studied. These rule-tags govern the transposition of words where that is
required to make sense, choice of meanings where a word has more than one interpretation,
omission of words that are not required for correct translation, and insertion of words
that are required to make sense. Though it is estimated that at least one hundred rule-
tags may be required to translate adequately scientific and technical literature in general,
the six selected rule-tags remain basic to translation.

Staff members of the Georgetown Language Institute proposed to IBM that their
practical solution to the language translation problem be adapted to the 701 computer.
Then under the sponsorship of the IBM program for endowed research in computation, '
work was undertaken at IBM World Headquarters on the enormously detailed problem of
programming the Georgetown linguistic solution into a meaningful program in the binary
language of the 701 computer.

* L. E. Dostert (Institute of Language and Linguistics, Georgetown University School
of Foreign Service), "An Experiment in Mechanical Translation: Aspects of the
General Problem."

In the first language translation demonstration in January 1954, a sample dictionary
consisting of 250 Russian words and their English equivalents, together with the rule-
tags which govern word choice and position, was stored on the surface of a magnetic drum
on the 701. The detailed instructions were placed in electrostatic storage. Two hundred
Russian sentences were then fed into the computer and printed out in correct English
translation at the rate of one full sentence every six or seven seconds.

I. Fundamentals of Language Translation Program
The systematic conversion of a given “source” language text into a desired “target”

language text involves two essentially distinct though logically interrelated programs,
which may be referred to as “lexical” and “operational” syntax. “Lexical” syntax
refers to discrimination between and recognition of the word elements of the source
language. “Operational” syntax refers to their subsequent manipulation in terms of the
grammatic-syntactic requirements of the target language. The term “word” refers to
any of the meaningful “strings,” or series, of alphabet symbols occurring as source
entries in an authoritative intralingual dictionary. Alphabet symbols include the actual
letters, punctuation marks, diereses and diacritical marks. The term “sentence”
connotes any meaningful string of words formed in accordance with the grammatical
rules of the language itself.

The Russian-English dictionary utilized in the 701 conversion program comprises
two types of source language words, that is, “complete” and “subdivided.” “Sub-
divided” words are those which occur in the dictionary as a separate root and ending.
Each of the two portions of a subdivided word is referred to as a “partial” word. The
root is the left partial, and the ending is the right partial. An example of a subdivided
word is

polyityichyeskyix,
which occurs under “p” as the left-partial word

polyityichyesk-
and under “y” as the right-partial word

-yix.
It should be noted that the term “subdivided” is applied to a source language word

only with respect to the program’s internal operation, that is, only after the word has
been read from punched card input and is being processed as datum within the machine’s
electrostatic memory. The machine recognizes the type of word only when reference is
made to the magnetic drum-stored dictionary.

A “complete” word is one which, as the name indicates, does not occur as a separate
stem and ending. Such a word, for example, is

yizgotovlyayetsya,
which occurs precisely in the form spelled out in the “y” region of the stored dictionary.

Each line of the dictionary includes the following material in the order mentioned:

Russian source language entry (complete or partial), successive alternate English
target equivalents, and a set of three syntactical codes. The English target language
equivalents have been restricted to two in number for this particular experiment. The
three syntactical codes, which will be referred to as “diacritics,” have the basic
functions of choice and linear arrangement of target language material.

When a Russian language word is looked up as a complete or subdivided sentence
item, its alternate English language equivalents are stored in a specially assigned region
of electrostatic storage and its associated diacritics are stored in another region. The
machine is programmed to remember which set of English language equivalents in the
former storage region is associated with any given set of diacritics in the latter.

Upon completion of this lexical syntax subprogram, the machine proceeds to execute
its operational syntax program of choice, rearrangement, insertion and deletion. (This
will be explained later in some detail.)

Three kinds of diacritics are associated with each Russian dictionary entry: two
are stored in the dictionary and the third is generated by the program. They include:

a) A “program-initiating” diacritic, or “PID,” which initiates the execution
of one of the six rules of operational syntax incorporated in the stored program.

b) A “choice-determining” diacritic, or “CDD,” further subdivided into a
three-digit “CDD1” and two-digit “CDD2” code. (The need for two choice-determining
diacritics is chiefly due to both forward and backward reference to the same item of
source language text.)

c) An “address diacritic,” containing the initial full-word addresses ADD1,
ADD2 in electrostatic storage of both English language equivalents associated with the
PID and both CDD’s. This diacritic is essentially a “bookkeeping” feature.

II. Working Assumptions of the Program
The Machine

A total of 33 distinct operations may be performed on the EDPM Type 701 computer.
These operations include addition, subtraction, multiplication, division, shifting,
logical transfers, etc.

The primary unit of information in the 701 is defined as a “full word” which consists
of 35 bits (binary digits) and a sign bit, or 36 bits in all. Each full word may be further
split up into two “half words” which consist of 17 bits and a sign, or 18 bits in all.

. Following is a brief description of the characteristics and organization of those
units of the 701 specifically involved in the execution of the language translation program.
1. Electrostatic Storage

Electrostatic (high-speed) storage of the 701 consists of a bank of cathode ray tubes.
One electrostatic storage unit can accommodate 2048 full words or 4096 half words. The
2048 full-word locations (cells) in electrostatic storage are identified by the negative
even integers from -0000 to -4094, and the 4096 half-word locations by the positive

integers from +0000 to +4095. The relationship between full and half-word addresses
is as follows: if “-2n” refers to a full-word location, then “+2n” refers to the left
half word and “+2n+l” to the right half word into which the full-word location may be
split.

Average access time to full and half-word information (consisting of machine
instructions or data) is 12 microseconds.

Although two electrostatic storage units are available, one unit only is used in this
pilot language translation program.
2. Magnetic Drums

The magnetic drum unit in the 701 consists of four addressable drums, each
drum accommodating 2048 full words of information. The full words on the drums are
addressable by a system similar to that used in electrostatic storage, except that there
is no provision for recognizing half words.

Because access to individual words on a drum is relatively slow in comparison with
electrostatic storage access, it is more efficient to use drums to store large blocks of
information. Average access time to the first word in a block, or “unit record,” of
information is 40 milliseconds. After the first word of such a block has been located,
the remaining words are read or written at the rate of 800 full words per second.
3. Card Reader

Cards may be punched (up to 72 columns) in any symbol desirable to the
programmer--usually alphabetic, decimal, or binary. Cards are read at the rate of
150 per minute. The card punches in alphabetic or decimal numerical code are
converted simultaneously to the computer binary code at full card reading speed by
providing a suitable “utility” program.
4. Printer

The 716 alphabetical printing unit of the 701 prints up to 72 alphabetic, numeric,
and special characters (in any desired format) at the rate of 150 lines per minute.
The Program

A seven-bit code is used to represent the alphabetic, numeric and special
characters in the translation program. Letters A-Z are denoted by the seven-bit
equivalents of (11-36)10, namely, 0001011-0100100; numerals 0-9 by 0000000-0001001;
hyphen (-) by 0001010=(10)10; blank by 0100101=(37)10; and asterisk (*) by 0100110=(38)10.
Thus, a full-word location in storage may contain up to five alphabetic, numeric or
special characters in bit positions 1-7, 8-14, 15-21, 22-28 and 29-35.

Although a six-bit code would be adequate to represent any of the 40 alphanumeric
or special characters used in this program, seven bits have been allotted for the
following reasons:

a) The sign bit in a full word is reserved for various different tests in
dictionary search and operational syntax routines. Thus a maximum number of five
characters can be stored in a full-word location, using either a six-bit or a seven-bit
code.

b) It was decided that it would be useful to add a leading zero bit to each
six-bit character code. The presence of a 1 in this leading character bit position signals
the end of execution of an English language sentence print-out, causing the machine to
re-initiate the card reading and conversion routine for the next sentence to be translated.

c) A seven-bit character code permits uniform spacing in a full-word
location. This is extremely desirable because of programming considerations.

Detailed statements of the working assumptions of the program follow.
1. Dictionary Storage

The Russian-English dictionary is stored on magnetic drums. Each line makes up
a drum unit record and has the following format:

a) Russian and English language word strings occupy integral numbers of
consecutive drum locations.

b) Spacing between Russian, English and diacritic strings is accomplished
by means of “null strings.” A null string is defined as a full-word location containing
zeros.

c) PID, CDD1 and CDD2 occupy two consecutive drum storage full-word
locations. The three-digit PID is contained in bit positions 15-35 of the first storage
location; positions 1-14 are occupied by zero bits. CDD1 also a three-digit diacritic,
occupies bit positions 1-21 of the second storage location; CDD2 , a two-digit diacritic,
occupies the remaining bit positions, 22-35.

d) Each line is terminated by means of two consecutive null strings. Each
line begins at the first full-word location following termination of the preceding line.

e) Any unused (non-significant) character positions in a dictionary-stored
Russian word entry are occupied by seven-bit coded zeros.

f) Similarly, any unused character positions in a dictionary-stored
English language equivalent are occupied by seven-bit coded blanks, subsequently
changed to zeros. (The Type 716 control panel is wired for zero suppression.)

g) The algebraic sign (+ or -) of each line is distributive, i.e., it
belongs to each and every full-word location defining the contents of that line. It is
determined in the following way: the sign “+” is associated with a complete or left-
partial (root) word; the sign “ – ” with a right-partial (ending) word. This distinction
of signs is useful at various stages of both the lexical and operational syntax subprograms.

Example 1. The line containing the Russian complete word entry
opryedyelyayetsya

appears as follows (each rectangle denotes a drum full-word location and the numerals below
each word its octal drum address):

As stated before, each character is represented by a seven-bit code. The sign ø
is used here to denote a coded blank. If only one significant English equivalent is
available (as in this case), it occupies the first of the ordered English equivalent
locations, Eng1 . Eng2 is denoted by “ -ø-ø-.”

Example 2. The line containing the Russian left-partial (root) entry

ugl-
appears:

Example 3. The line containing the right-partial (ending) entry

-a

appears:

2. Sentence Read-In
Each Russian sentence word read into electrostatic storage is separated from its

successor by a single null string, and two successive null strings terminate a sentence.
Again (see Address 3262 above), unused character positions in the last full-word
location containing a given sentence word are occupied by seven-bit coded zeros. There-
fore spacing between successive sentence words varies between 35 and 63 zero bits
(respectively 5 and 9 unused character positions), depending upon the length of the
Russian word.
3. Russian Word Look-Up

To facilitate Russian word look-up in the drum-stored dictionary, the first
character of each input sentence word is used as the argument of a “thumb index” table
of 26 full words. Each word in the table contains the drum address and drum location
of the initial full-word location of the first Russian dictionary entry in that particular
alphabetic region. Thus, if “X” denotes an alphabetic character 11≤ X ≤ 36, the
following mapping is given:

X (DX, LX),
where Dx= address of one of the four addressable drums in the magnetic drum unit

As may be easily verified, the binary-coded representation for the unit record in
Example 2 is the following:

(0128, 0129, 0130 or 0131) and Lx= drum location (=2t, where 0000 ≤ t ≤ 2047).
Since the binary numeric equivalents of A-Z are consecutive, reference to the

“thumb index” is virtually immediate. If “X” denotes the decimal equivalent of the
initial character of a Russian sentence word, then

-[T+(2X-20)], where T > 0 and even
denotes the full-word location in electrostatic storage containing Dx and Ax, in the
left and right half-word address positions respectively. (The address part of a half
word in storage is contained in the rightmost 12 bits.)
4. Data Storage

a) Each Russian sentence read into the machine is simultaneously converted from
standard IBM punched-card code to the corresponding string of seven-bit equivalents
and then stored in an electrostatic storage region beginning at - (S+2), where S > 0 and
even. (See paragraph 2.)

b) In the course of each look-up subroutine iteration, each Russian dictionary entry
to be examined is copied from its drum location(s) into an erasable-storage "comparison"
region of electrostatic storage beginning at - (C+2), where C > 0 and even.

c) Immediately following the completion of a sentence-word look-up, the pair of
English language equivalent strings from the dictionary, Eng1 and Eng2, and associated
PID, CDD1 and CDD2 strings are stored in electrostatic storage regions as follows:

1) Eng1 and Eng2 strings are stored in a region beginning at - (E+2),
where E > 0 and even.

2) Diacritic strings are stored in successive blocks of three full-word
locations. The j-th (j=l,2,3) word of the i-th diacritic block has address

-[D+6(i-l)+2j], where D > 0 and even.
Location

-[D+6(i-l)+2]
contains PID1 in bit positions 15-35.
Location

-[D+6(i-l)+4]
in bit positions 1-21, and

Finally, half-word location
+[D+6(i-l)+6]

contains the initial full-word address,
And half-word location

+[D+6(i-l)+7]
contains the initial full-word address,

in the English-equivalents region.

d) An erasable region of electrostatic storage beginning at location - (R+2) is
specially assigned for temporary storage of right-partial (ending) words during the
course of each ending look-up subroutine.

contains in bit positions 22-35.

e) The erasable final-print-out region of electrostatic storage begins at -(P+2),
where P > 0 and even.

The basic operations of the machine translation program are indicated in the
flow chart in Figure 1.

Basic Operations of the Machine Translation Program

Figure 1

III. Lexical Syntax Subprogram
Following is a brief description of the basic logical functions and operations of the

initial lexical syntax subprogram of the machine translation program. The lexical
syntax subprogram is completed for each and every sentence word in the source
language before the operational syntax program controlling choice, rearrangement,
insertion, and deletion is initiated.
(1) Let X1X2...Xn, where n ≥ 1
denote a source word, consisting of a string of meaningfully juxtaposed characters. As
mentioned before, an initial quick table, look-up search notifies the machine of the drum

of the first source entry in the Xi region of the magnetic-

drum-stored dictionary. Since source and target words occupy integral numbers of
full-word locations in drum and electrostatic storage, and each full-word location
contains up to five significant alphabetic characters,the above character string (1) may be
briefly denoted by

is then programmed to run a character-by-character comparison test on both input and
dictionary strings.

Character extraction for purposes of comparison is accomplished by means of the
EXTRACT operation:
(3) - EXTR []

The EXTRACT operation is a process of logical multiplication. The contents of the
accumulator register are matched with the contents of the electrostatic storage location
specified by the address part of the EXTRACT instruction. For each bit position
containing a 1 in both the accumulator and in storage, a 1 is placed in the bit position
in storage. The remaining bit positions in storage are filled with zeros.

In order to extract a character from a five-character string in storage location -U,
the entire contents of -U are placed in the accumulator. The appropriate extractor, or
“mask,” is then placed in location -V. The “mask” has 1's in only those bit positions
of location -U that are being compared at the moment. Thus if the second character in
location -U is to be extracted, the mask

is stored in location -V. The sequence
(4) -RADD U

-EXTR V
then stores the desired information in location -V.

and locationaddress

A set of five character extraction masks are stored permanently in locations
(5) -(M+2k), where k=l,2,3,4,5
The masks may be denoted by

look-up of a complete or right-partial (ending) sentence word has been achieved, since
dictionary entries are stored in ascending numerical order and every sentence word
occurs either complete or subdivided in the dictionary.
If, on the other hand, (7) holds, but

then either

or

If case a) holds, the machine is programmed to skip to the next dictionary source
entry. If case b) holds, the machine is programmed to remember the initial drum
locations of Eng1, Eng2 and diacritic strings associated with the possible root encountered,

region for a possible longer root. Since the

last root encountered is the longest, it is necessary to retain only the last occurring
English-equivalent and diacritic references.

Having looked up the longest word root, the machine is programmed to search for

the ending (right-partial) entry whose first character is

subroutine begins, however, the ending character string appearing in the original
subdivided word must be repositioned so that the j-th character becomes the first, the
j+l-st the second, etc. This is accomplished merely by shifting the contents of the full-
word location(s) containing the ending character string 7(j-l) bit positions to the left.
The ending character string is then stored in the region of storage set aside for the
temporary storage of right-partial words during each ending look-up subroutine:

-(R+2), -(R+4),...

As soon as each source sentence complete and subdivided word has been looked
up and its associated English equivalents and diacritics read from the drum into
electrostatic storage, a small subroutine writes a special exit-transfer test value
(a 1 in the leading character bit position) in the first full-word location following the
last diacritic block in the diacritics region of storage. This “terminal” diacritic
value is later recognized by the machine as signalling the end of the operational syntax
subprogram.

A flow chart of the lexical syntax subprogram is shown in Figure 2. It should
be noted that in Fig 2 are in Figure 2 are equivalent to Dx and Lx, resepectively, in the
text.

and continue searching the rest of the

Before the ending look-up

and

IV. Operational Syntax Subprogram
Rules of Operational Syntax

Following are the six rules of operational syntax programmed into the machine.
These rules are in virtually the original language of presentation of the problem.
 Rule 1

If PID associated with a Russian dictionary entry is “ ***,” then adopt English equivalent
I of alternative English language equivalents, retaining order of appearance of output
with respect to previous sentence words.
Rule 2
If PID is “110,” is CDD2 associated with the first preceding complete sentence word
encountered “21”? If so, reverse order of appearance of words in output (i.e., word
carrying “21” should follow that carrying “110”); otherwise, retain order.
In both cases, adopt English equivalent I associated with “110.”
Rule 3
If PID is “121,” is CDD1 of the first following complete, subdivided or partial (root
or ending) sentence word encountered “221” or “222”? If it is “221,” adopt English
equivalent I of word carrying “121”; if it is “222,” adopt English equivalent II.
In both cases, retain order of appearance of words in output.
Rule 4
If PID is “131,” is CDD2 of first preceding complete sentence word or either portion
(root or ending) of first preceding subdivided sentence word encountered equal to “23”?
If so, adopt English equivalent II of word carrying “131,” and retain order of appearance
of words in output; if not, adopt English equivalent I and reverse order of appearance
of words in output.
Rule 5
If PID is “141,” is CDD1 of first preceding complete sentence word or either portion
(root or ending) of first preceding subdivided sentence word encountered equal to “241”
or “242”? If it is “241,” adopt English equivalent I of word carrying “141”; if it is
“242,” adopt English equivalent II.
Rule 6
If PID is “151,” is CDD1 of first following complete sentence word, or either portion
(root or ending) of first following subdivided sentence word encountered equal to “25”?
If so, adopt English equivalent II of word carrying “151”; if not, adopt English equivalent
I.
In both cases, retain order of appearance of words in output.

Example
The following example illustrates how the rules of operational syntax are applied

in the computer language translation program.

Source Sentence: Vyelyichyina ugla opryedyelyayetsya otnoshyenyiyem dlyini dugi k radyiusu.

Analysis:
English Equivalents

Russian Item Eng1 Eng2 PID CDD1 CDD2

Vyelyichyina Magnitude ------- *** *** **
ugl - coal angle 121 *** 25
- a of -------- 131 222 25
opryedyelyayetsya is determined ------- *** *** **
otnoshyenyi - relation the relation 151 *** **
- yem by -----... 131 *** **
dlyin - length ------- *** *** **
- i of 131 *** 25
dug - arc ------- *** *** **
- i of 131 *** 25
k to for 121 *** 23
radyius - radius ------- *** 221 **
- u to 131 *** **

Target Sentence: Magnitude of angle is determined by the relation of length of arc to radius.

Programming Assumptions
An intensive analysis of the Georgetown linguists' statement of the rules of

operational syntax was made in conjunction with a detailed study of the structure of
diacritic strings corresponding to a limited (ten) but syntactically representative Russian
sentence sample. The following programming assumptions were subsequently evolved
and confirmed for a larger sample:

These assumptions together with the rules stated before led to the operational
syntax subprogram flow charts shown in Figures 3A, 3B, and 3C. These charts
represent completely the phase of programming related to language structure.

Except for some rather intricate bookkeeping routines, actual instruction-coding
of the reformulated rules was straightforward.

Upon termination of the operational syntax subprogram a special exit-transfer location
is written at the end of the print-out region in storage. A special exit-transfer test value
contained in this location causes the machine to reinitiate the card reading and conversion
routine for the next sentence to be translated.
V. Utility Programs
Reading Program

Sentences are keypunched by the 026 Printing Punch in the standard IBM punched-card
code in columns 10-44 and 46-80. The printed interpretation is placed at the top of each
card. Columns 9 and 45 contain the algebraic signs of the full-word values contained in
the left and right-half card rows.

In the standard IBM punched-card code, each alphabetic character is represented
in a single column by a double-punch consisting of a “zone” punch in either the zero,
11 or 12 row, and a numeric punch in one of the remaining rows. Figure 4 shows how
the numerals 0-9 and the letters A-Z are represented on a standard IBM punch card.

Figure 4

It may be observed in Figure 4 that the decimal equivalents (11-36) of the alphabet
letters may be obtained by adding a 10 to the numeric punch value when the zone punch is
12, a 19 when the zone punch is 11, and a 27 when the zone punch is 0.

Conversion of each alphabetically punched sentence card occurs as follows. The
machine is programmed to scan across the card and convert successive 5-column
fields, storing the results in successive full-word storage locations.

In a 5-column card field there are twelve 5-bit arrays - one array in each card
row. Each 5-bit array falls in the range of values 00000-11111. Therefore each 5-bit
array may be used as the argument of a full-word table look-up, defined by the simple
transformation
(1) b1b2b3b4b5 000000b1 000000b2 000000b3 000000b4 000000b5

When a sentence card is read, each 5-bit array in a 5-column card field is
transformed into a 35-bit array as defined by (1). Associated with each 5-column card
field is a double-punch blank-column (DPBC) register, a numeric conversion register,
and three “zone” registers.

The DPBC register stores the sum of the functional values (1) corresponding
to the arrays in rows 9-1. If a card field has been punched alphabetically in each
column (zone punch and a numeric punch), after card reading of rows 9-1 the contents
of the DPBC register will appear as follows:

0000001 0000001 0000001 0000001 0000001

The numeric conversion register stores the 35-bit numeric conversion of a five-
column field. This is obtained by summing successive partial sums of the functional
values (1) corresponding to the arrays in rows 9-1. Thus if a 5-column card field
contains the numeric punches 58638, the contents of the numeric conversion counter
will appear as follows:

0000101 0001000 0000110 0000011 0001000

The “zone” registers are reserved for storing the functional values (1)
corresponding to the 0-row, 11-row, and 12-row arrays.

Since the 0-row is punched for the numeral zero as well as for the alphabetic
characters S-Z, provision must be made for the machine to discriminate between these
two cases. This is done by using the contents of the “0-row” register as an extraction
mask with respect to the contents of the DPBC register.

The 0-row extracted value of the DPBC register is multiplied by 27. The contents
of the “11-row” register are multiplied by 19 and the contents of the “12-row” register
are multiplied by 10. All three products are then added to the contents of the numeric
conversion counter to obtain the final conversion for the 5-column field.

The above outlined basic conversion cycle is repeated for each sentence card. A
blank card is used to separate sentences. When the machine encounters the blank card,
it transfers control to the lexical syntax subprogram.

Each binary card image is reconverted to a decimal card image which is checked
row for row against the original “built-up” decimal card image. Sentence loading is

thereby checked during each card-reading cycle.
Printing Program

The 716 alphabetical printer unit is programmed to print out 14 full-word locations
of translation per line without the “echo-checking” feature, which is unnecessary in this
program. Part of the printing routine, that involving the construction of each decimal
card image to be printed, is also utilized in the reconversion-checking subroutine of
the reading program.

ACKNOWLEDGMENT

The author wishes to express his deepest gratitude
to Professor Leon Dostert and Dr. Paul Garvin of
the Georgetown Institute of Languages and Linguistics
for their splendid cooperation in connection with every
detail of analysis and programming relating to this
joint project. Grateful acknowledgment is also made
to Mr. Tom Steel for his very valuable assistance in
connection with the input-output conversion routine.

