
[Mechanical Translation and Computational Linguistics, vol.11, nos.1 and 2, March and June 1968]

Development of a Stemming Algorithm*

by Julie Beth Lovins,† Electronic Systems Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

A stemming algorithm, a procedure to reduce all words with the same
stem to a common form, is useful in many areas of computational lin-
guistics and information-retrieval work. While the form of the algorithm
varies with its application, certain linguistic problems are common to any
stemming procedure. As a basis for evaluation of previous attempts to deal
with these problems, this paper first discusses the theoretical and practical
attributes of stemming algorithms. Then a new version of a context-sensi-
tive, longest-match stemming algorithm for English is proposed; though
developed for use in a library information transfer system, it is of general
application. A major linguistic problem in stemming, variation in spelling
of stems, is discussed in some detail and several feasible programmed so-
lutions are outlined, along with sample results of one of these methods.

I. Introduction
A stemming algorithm is a computational procedure
which reduces all words with the same root (or, if pre-
fixes are left untouched, the same stem) to a common
form, usually by stripping each word of its derivational
and inflectional suffixes. Researchers in many areas of
computational linguistics and information retrieval find
this a desirable step, but for varying reasons. In auto-
mated morphological analysis, the root of a word may
be of less immediate interest than its suffixes, which can
be used as clues to grammatical structure. (See, e.g., Earl
[2, 3] and Resnikoff and Dolby [6]. This field has also
been reported on by S. Silver and M. Lott, Machine
Translation Project, University of California, Berkeley
[personal communication].) At the other extreme, what
suffixes are found may be subsidiary to the problem of
removing them consistently enough to obtain sets of
exactly matching stems. Word-frequency counts using
stems, for stylistic (as described by S. Y. Sedelow [per-
sonal communication]) or mathematical analysis of a
body of language, often require matched stems. (So
does stemming as part of an information-retrieval sys-
tem, the specific application which motivated this pa-
per.) But certain linguistic problems are common to any
"stem-oriented" stemming algorithm, no matter what
its ultimate use. The brief description below of the
framework within which Project Intrex is planning to
use
a stemming algorithm should be viewed as but one pos-
sible application for research on the morphological
structure of English and other languages. Similarly, a

* The research reported on in this paper was carried out at
Project Intrex, which is supported under a grant from the
Carnegie Corporation; under contract NSF-C472 from the
National Science Foundation and the Advanced Research
Projects Agency of the Department of Defense; and under a
grant from the Council on Library Resources, Inc.

† Now at the University of Chicago, Department of Lin-
guistics.

variety of applications are considered in evaluating the
theoretical and practical attributes of several previous
algorithms.

As a major part of its information transfer experi-
ments, Project Intrex [5] is developing an integrated re-
trieval system in which a library user, through a remote
computer terminal, can first obtain extensive informa-
tion from a central digital store about documents that
are available on a specific subject, and then obtain the
full text of the documents. A prototype retrieval system
is being assembled in order to permit experimentation
with its various components. The experimental system
will use a specially compiled augmented library cata-
logue containing information on approximately 10,000
documents in the field of materials science and engi-
neering, including not only author, title, and other basic
data about each document but also an abstract, bibliog-
raphy, and a list of subject terms indicating the content
of the document. Each subject term is a phrase of one
or more English words. A stemming algorithm will be
used to maximize the usefulness of the subject terms.
In many cases, the information which is semantically
significant to the user of the system is contained in the
stems of the lexical words in the subject terms, and
suffixes and function words merely enable this informa-
tion to be expressed in a grammatical form. The form
of the words which the user inputs will often not corre-
spond to that of the original words in the catalogue. To
permit the words in the user's query to match the words
in the catalogue entry's subject terms, both query and
subject terms can be stripped of the suffixes that prevent
their matching. For example, computational and com-
puting might both be stemmed to comput.

In constructing the software needed for this particu-
lar application of stemming (or any other), we encoun-
ter questions which are answerable only in terms of the
over-all system. For instance, what should constitute a
"word" to be stemmed? In the case of Intrex, what suf-
fixes should the algorithm search for that are specifically

22

oriented toward terms in materials science and engi-
neering? These are questions of less general interest
than the linguistic problems of extracting a stem from
any one word in a non-specialized vocabulary (for an
example of lists of affixes taken from terms in specific
technical fields, see Dyson [1]). The development of an
efficient algorithm should logically precede investigation
of these questions, and they will not be discussed further
here.

The approach to stemming taken here involves a two-
phase stemming system. The first phase, the stemming
algorithm proper, retrieves the stem of a word by re-
moving its longest possible ending which matches one
on a list stored in the computer. The second phase
handles "spelling exceptions," mostly instances in which
the "same" stem varies slightly in spelling according to
what suffixes originally followed it. For example, ab-
sorption will be output from phase one as absorpt, ab-
sorbing as absorb. The problem of the spelling excep-
tions, which in the above example involves matching
absorpt and absorb, is discussed thoroughly in Section V
of this paper. One particular solution to the problem,
termed recoding, has been implemented in the present
phase two. We also plan to use the present basic algo-
rithm as a foundation in testing out other feasible so-
lutions.1 This plan is appropriate because spelling-ex-
ception rules can, and probably should, be formulated
independently of the stemming algorithm proper.

II. Stemming, Form, and Meaning
By its computational nature, a stemming algorithm has
inherent limitations. The routine handles individual
words: it has no access to information about their gram-
matical and semantic relations with one another. In
fact, it is based on the assumption of close agreement of
meaning between words with the same root. This as-
sumption, while workable in most cases, in English rep-
resents an approximation at best. It is a better or worse
approximation depending on the intended use of the
stems, the semantic vagaries of individual roots, and the
strength of the algorithm (how radically it transforms
words). A stemming algorithm strong enough to group
together all words with the same root may be unsuit-
able for, say, word-frequency counting. For such appli-
cations one would not wish a pair like neutron-.neutral-
izer to coincide, and one would prefer to work with a
very limited list of suffixes.

Where stems are used as a means of associating re-
lated items of information, as they are in an automated
library catalogue, and where the catalogue can be in-
terrogated in an on-line mode, it seems best to use a
strong algorithm, that is, one that will combine more
words into the same group rather than fewer, thus pro-
viding more document references rather than fewer.

1 I am indebted to Richard S. Marcus and Peter Kugel for
valuable discussion of this specific problem and of this report
as a whole.

After a word in the library user's query has been
stemmed and a matching stem and associated list of
full-word forms has been found in the catalogue and
presented to the user, he may decide to discard some of
these forms in order to inhibit searching for those full-
word forms which are unrelated to his subject.

Occasionally, the output of a stemming routine may
be not only ambiguous but also "not English." This hap-
pens when a suffix is identical to the end of some root.
For instance, -ate is a noun suffix in directorate, but
simply part of a verbal root in create and appreciate.
In English, situations of this type limit the use of suf-
fixes as clues to parts of speech. Sometimes grammatical
information is required for stemming, not provided by it.

However, the generation of such non-linguistic stems
as cre- and appreci- is not a serious problem; if the pur-
pose of stemming is only to allow related words to
match, then the stems yielded by a stemming algorithm
need not coincide with those found by a linguist. The
exact form of the stem is not critical if it is the same
no matter what suffixes have been removed following it,
and if "mistaken" stemming does not generate an am-
biguity. Similarly, the ending that must be removed
in order to achieve a consistent algorithm is determined
in relation to the stemming system as a whole. The end-
ing may or may not be exactly equivalent to some en-
tity in English morphology, and it may be acceptable
to have the computer program remove it when a linguist
would not, with no detriment to the ultimate results.

III. Types of Stemming Algorithms
Two main principles are used in the construction of a
stemming algorithm: iteration and longest-match. An
algorithm based solely on one of these methods often
has drawbacks which can be offset by employing some
combination of the two principles.

Iteration is usually based on the fact that suffixes are
attached to stems in a "certain order, that is, there exist
order-classes of suffixes (see, e.g., Lejnieks [4]). Each
order-class may or may not be represented in any given
word. The last order-class—the class that occurs at the
very end of a word—contains inflectional suffixes such as
-s, -es, and-ed. Previous order-classes are derivational.
(As pointed out by J. L. Dolby [personal communica-
tion], there are several cases known in which a deriva-
tional suffix (-ness) follows an inflectional one (-ed or
-ing). This occurs with certain nominalized adjectives
derived from verbs by use of one of these two inflec-
tional endings, for example, relatedness, disinterested-
ness, willingness.) An example of the lowest order-class
in a word may be what is technically part of the root
(see the -ate example above), but for the purposes of
computation it is considered part of the ending. An
iterative stemming algorithm is simply a recursive pro-
cedure, as its name implies, which removes strings in
each order-class one at a time, starting at the end of a
word and working toward its beginning. No more than
one match is allowed within a single order-class, by

DEVELOPMENT OF A STEMMING ALGORITHM 23

definition. One must decide how many order-classes
there should be, which endings should occur in each,
and whether or not the members of each class should be
internally ordered for scanning.

The longest-match principle states that within any
given class of endings, if more than one ending provides
a match, the one which is longest should be removed.
This principle is implemented by scanning the endings
in any class in order of decreasing length. For example,
if -ion is removed when there is also a match on -ation,
provision would have to be made to remove -at, that is,
for another order-class. To avoid this extra order-class,
-ation should precede -ion on the list.

An algorithm based strictly on the longest-match prin-
ciple uses only one order-class. All possible combina-
tions of affixes are compiled and then ordered on length.
If a match is not found on longer endings, shorter ones
are scanned. The obvious disadvantage to this method
is that it requires generating all possible combinations
of affixes. A second disadvantage is the amount of stor-
age space the endings require.

The first disadvantage may also be present to a large
degree when one is setting up an iterative algorithm
with as many order-classes as possible. To set up the
order-classes, one must examine a great many endings.
Furthermore, it is not always obvious to which class a
given string should belong for maximum efficiency. It is
also entirely possible that the occurrence of members of
some classes is context dependent (see below). In short,
while an iterative algorithm requires a shorter list of
endings, it introduces a number of complications into
the preparation of the list and programming of the rou-
tine.

Some idea of the breadth of these complications is
gained through consideration of another basic attribute
of a stemming algorithm: it is context free or context
sensitive. Since "context" is used here to mean any
attribute of the remaining stem, "context free" implies
no qualitative or quantitative restrictions on the removal
of endings. In a context-free algorithm, the first ending
in any class which achieves a match is accepted. But
there should presumably be at least some quantitative
restriction, in the sense that the remaining stem must
not be of length zero. An example of this extreme case
is the matching of -ability to ability as well as to com-
putability. In fact, any useful stem usually consists of
at least two letters, and often three or four constitute
a necessary minimum. The restriction on stem length
varies with the ending; how it varies can again only
be determined in relation to the total system. The algo-
rithm developed by Professor John W. Tukey of Prince-
ton University (personal communication) associates a
lower limit with each ending. Some of his limits are
quite high (e.g., seven letters). I have been less con-
servative and have proposed a minimum stem length of
two; certain endings have an additional restriction in
that their minimum stem length is three, four, or five
letters.

The kind of qualitative contextual restrictions that

should be imposed is a somewhat open question. In
order to get the best results, certain endings should not
be removed in the presence of certain letters in the re-
sultant stem, usually those letters that immediately pre-
cede the ending. The more desirable form of context-
sensitive rule is a general one that can be applied to a
number of endings, but such rules are few. One exam-
ple is "do not remove an ending that begins with -en-,
following -e." Violation of this rule would change seen
to se-, a potentially ambiguous stem (cf. sea minus -a,
seize minus -ize, etc.). But a number of rules must be
created for individual endings in order to avoid certain
special cases peculiar to those endings. One can go to
great lengths in this direction, with increasingly small
returns. I have preferred to start by treating a number
of the more obvious exceptions in the hope that the per-
centage of words not accounted for will be small enough
to preclude the need to add many additional rules.

An iterative stemming algorithm, that is, one that
contains more than one order-class of endings, is pre-
sumably no less complicated by context-sensitive rules
than a one-class algorithm, and is probably more so;
exceptions associated with the members of each class
may depend on a rather complicated context. For ex-
ample, suppose there is a rule (in a non-iterative algo-
rithm) stating that minimal stem length is five before
-ionate. The endings -ion and -ate occur separately,
also, with different restrictions. In an iterative routine,
-ion and -ate would only occur as separate endings, in
different order-classes; and -ion would be restricted by
the rule that its preceding context must be of length
five if -ate was found during the preceding iteration. In
other words, the endings that are removed may influ-
ence the lower-order endings that can be removed sub-
sequently. The implications for simplicity in program-
ming are self-evident. In a pure longest-match algo-
rithm, the only context that need be considered is the
prospective stem itself.

Since computer-storage space for endings was not an
immediate problem, it was decided to test a non-itera-
tive stemming algorithm based on a one-class list of
endings. That is, the intuitively inefficient procedure of
listing both singular and plural forms, and so on, has
been followed in order to minimize the number of con-
text-sensitive rules necessary. Compilation of the actual
list of endings used is discussed in the next section; the
algorithm is outlined in Section VI.

The author is aware of three previous major attempts
to construct stemming algorithms. Tukey has proposed
a context-sensitive, partially iterative stemming algo-
rithm whose endings are divided into four order-classes.
The first (highest-order) class contains only terminal s
which, however, is not removed after i, s, or u. The
second class is recursive, the third is non-recursive and
ordered on length. The fourth class consists of remain-
ing terminal consonants. The last three classes also have
a few members each with simple context restrictions,
and all classes have limits on minimum stem length.
(The basic structure of this "tail-cropping" algorithm

24 LOVINS

is not affected by its multilingual orientation, though
the endings used would obviously differ from those
found in a procedure for English only.)

One of the more interesting things about the Tukey
system is its structural complexity. One class uses the
longest-match principle only, while another is iterative
(and thus not a proper order-class). Presumably the
object of this heterogeneous structure is to avoid the
repetitiveness of a one-class ending list in the most con-
cise way possible. However, as stated earlier, there is a
compromise between conciseness of rules and simplicity
of programming.

By contrast, the algorithm developed at Harvard Uni-
versity by Michael Lesk, under the direction of Professor
Gerard Salton [10], is based on an iterated search for
a longest-match ending. After no more matches can be
found, terminal i, a, and e are removed, and then pos-
sibly terminal consonants. There are apparently no con-
textual restrictions of any kind. (A brief description of
the algorithm, including a useful list of 194 endings,
was transmitted to us via personal communication. A
sample of these suffixes, and further information about
the algorithm, have more recently appeared in Salton
[9].)

A third algorithm has been developed by James L.
Dolby of R and D Consultants, Los Altos, California
(personal communication). This algorithm works in three
stages, the first of which involves a set of context-
dependent transformations. Most of the cropping is done
in the second stage, a context-free, longest-match, re-
cursive procedure which removes endings in any order
but is subject to the restriction of a two-syllable mini-
mum stem length. In the final stage there is a context-
dependent dropping of inflectional forms. The endings
used were derived by algorithm from word lists on the
basis of orthographic context, and are "minimal" seg-
ments of one to four letters in length.

IV. Compilation of a List of Endings
A one-class list of endings (concatenations of suffixes)
was compiled in the following way: A preliminary list
was based on endings found in a small portion of the
augmented catalogue being developed by Project Intrex
and on endings in the list used at Harvard. The pre-
liminary list was evaluated by applying the endings on
this list to a portion of the output from Tukey's tail-
cropping routine, levels 1-3, and volumes 5-7 of the
Normal and Reverse English Word List [8] (volumes
5-7 contain unbroken words sorted alphabetically when
written from right to left). Since each of these lists is
organized according to ends of words, it was possible
to see whether the removal of a given ending would
result in (1) two different stems matching, or (2) a
stem not matching another stem which it should match.
Either of these conditions, unless it was caused by a
spelling exception or caused improper matching in only
a few rare cases, necessitated the addition of new end-
ings, the disposing of old ones, or the addition of context-

sensitive rules, until the system seemed adequately self-
consistent. The resultant experimental list contained
about 260 endings, divided into eleven subsets; the sub-
sets are ordered in disk storage in accordance with de-
creasing length of the endings and are internally alpha-
betized for easy handling. The internal order does not
affect the end result of the algorithm. Each subset is
preceded by a special heading giving the length of the
endings in it; each ending is followed by a condition
code and a carriage return as delimiter. The condition
code consists of a letter of the alphabet containing
information about contextual restrictions on the stem
preceding the ending.

The present list of endings, which is a slightly modi-
fied version of the original one (see Section VI), is
given in Appendix A; the context-sensitive tests associ-
ated with the endings are listed in Appendix B.

V. Some Cures for "Spelling Exceptions"
The term "spelling exceptions" is a catchall term cover-
ing all cases in which a stem may be spelled in more
than one way. The majority of such variations in En-
glish occur in Latinate derivations. The examples given
below show some of the range and type of variations
that may occur. Trouble spots are italicized; the stem
is separated from the ending by a vertical bar.

produc|er : product|ion invert|ed : invers|ion
induc|ed : induct|ion adher|e : adhes|ion
induct|ed : induct|ion register|ing : registr|ation
consum|ed : consumpt|ion resolv|ed : resolut|ion
absorb|ing : absorpt|ion admitt|ed : admiss|ion
attend|ing : attent|ion circl|e : circul|ar
expand|ing : expans|ion matrix| : matric|es
respond| : respons|ive lattic|e : lattic|es
exclud|e : exclus|ion index| : indic|es
collid|ing : collis|ion hypothes|ized : hypothet|ical

analys|is : analyt|ic

Several other types of spelling exceptions also occur,
such as the doubling of certain consonants before a
suffix (input:inputting), and contrasting British and
American spellings (analysed:analyzed).

While the derivational spelling changes do occur only
before certain endings, this set of endings is usually
quite large. Thus it is not practical to consider the ex-
ceptional stem-terminal consonants as part of the end-
ings in a one-class algorithm such as the one we are
using; the number of extra endings that must be in-
cluded to do so is prohibitive. Two major types of post-
stemming procedures may be followed to take care of
the exceptions, however. I shall call them recoding and
partial matching. (Salton [9, p. 82] describes a routine
which includes some attributes of each of the procedures
discussed below. While it will take care of such prob-
lems as consonant doubling, it does not appear to have
been formulated as a general solution to the trickier
types of spelling exceptions.)

A recoding procedure is properly part of the stem-

DEVELOPMENT OF A STEMMING ALGORITHM 25

ming routine itself, although it introduces an element
of iteration into it. Recoding occurs immediately fol-
lowing the removal of an ending and makes such
changes at the end of the resultant stem as are neces-
sary to allow the ultimate matching of varying stems.
These changes may involve turning one stem into an-
other (e.g., the rule rpt → rb changes absorpt to ab-
sorb), or changing both stems involved by either re-
coding their terminal consonants to some neutral ele-
ment (absorb → absorß, absorpt → absorß), or remov-
ing some of these letters entirely, that is, changing them
to nullity (absorb → absor, absorpt → absor).

In proposing a recoding procedure, one makes the
assumption that most of the spelling changes that occur
can be adequately covered by a small set of context-
sensitive transformational rules—that the exceptions are
predictable enough so that the number of "accidental"
transformations is not sufficiently great to distort the
whole stemming system. An example of such an acci-
dental transformation is send → sens, generated by the
rule end → ens. This rule was originally intended to
take care of such pairs as extend:extensive, but instead
it has made the stem sens ambiguous (it now stands for
both send and sense). Fortunately the ambiguity can
be resolved by changing the rule to "end → ens except
following s"; but this type of solution may not be pos-
sible in all cases.

This assumption of a large amount of regularity in
spelling changes appears to be a sound one. However,
the exceptions are not totally predictable (i.e., not al-
ways dependent on immediate orthographic context);
therefore a certain number of mistakes will result, which
must be balanced against the favorable attributes of the
method, like its speed.

It is important to note that the rules used in recoding
should be not only context-sensitive but also ordered.
Suppose we have the two rules:

1. Remove one of double b, d, g, m, n, p, r, s, t.
2. Turn terminal d, r, t, z into s.

The second rule is intended to take care of collide:
collision, etc. Now suppose we have the words admit-
tance and admission. The first is stemmed to admitt,
the second to admiss. If the rules are applied in the
order given, admitt → admit → admis and admiss
→ admis; if they were reordered, however, the result
would be admitt → admits, admiss → admis, which is
incorrect.

A more complete set of recoding rules of the type
exemplified above is given in Appendix C. These rules
are subject to revision, of course; it would also be de-
sirable to contrast their results with those produced by
neutralizing or nullifying transformations (see above).

The second kind of cure for spelling exceptions, par-
tial matching, is methodologically quite different from
recoding. Yet the basic assumptions, and the results,
may be similar. The first assumption is that spelling
changes in English are restricted to certain types which

may occur, but do not always occur. The second as-
sumption is that these changes involve no more than
two letters at the end of a stem--this is merely an em-
pirical result which has not yet been contradicted. It has
also been observed that the sequences of letters that
cause difficulty are often common to more than one class
of exceptions. In recoding, this means that some rules
can cover more than one type of exception, although
it is not usually the case.

The crucial difference between recoding and partial
matching is this: a recoding procedure is part of the
stemming algorithm while a partial-matching procedure
is not. Partial matching operates on the output from the
stemming routine at the point where the stems derived
from catalogue terms are being searched for matches
to the user's stemmed query. All partial matches, within
certain limits, are retrieved rather than just all perfect
matches; discrepancies are resolved after retrieval, not
in the previous stemming procedure. This has the ad-
vantages of reducing stemming to the one-step process
of removing an ending and of eliminating the context
specifications sometimes needed in recoding. The dis-
advantages, which are not so obvious, can be discussed
only after a more complete description of a partial-
matching procedure is given.

Such a procedure starts with an unmodified stem S1
—again, absorpt is a good example. The first step is to
search the list of stemmed catalogue terms for all those
which begin with S1 minus its last two letters: in this
case, all stems of any length beginning with absor,
which we call S2. Of course, special provisions will have
to be made for cases in which S1 is only two or three
letters long. Among those stems returned will be absorpt
and absorb. Absorbefaci, the stem of absorbefacient,
may also be found. This last item will be eliminated,
probably for the better, by the next step of the pro-
cedure, which discards all stems more than two charac-
ters longer than S1 (here, more than nine letters long).
We then have collected all stems which match absorpt
within two letters in either direction. Given any one of
these, Sj, a final match is allowed between Sj and S1 if
and only if either Sj = S1 or the following conditions
are satisfied:
1. The stems Sj and S1 must match at least up to two letters

before the end of the longer of them.
2. If Sj and S1 are the same length and differ by one letter,

this letter plus a blank must occur on a closed list (see
Appendix D) for each stem.

3. If Sj and S1 are the same length and differ by two letters,
each sequence of two letters must occur on the list.

4. If Sj and S1 differ in length by one, the last two letters of
the longer, and the last of the shorter plus a blank, must
occur on the list.

5. If Sj and S1 differ in length by two, the last two letters of
the longer must occur on the list.

The above rules amount essentially to examining the
last two letters of stems that match up to that point;
if the stems are different lengths, all "missing letters"

26 LOVINS

DEVELOPMENT OF A STEMMING ALGORITHM 27

in the shorter are represented by blanks. The "closed list"
needed for this routine is given in Appendix D.

It may appear that an unacceptable number of
"wrong" matches would result from this procedure,
since there are no restrictions on which pairs of items
on the list may be used to produce a match. There are
two defenses against this view:

First, such a closed list does exist. Many partial
matches will not be allowed. Of those that are allowed
erroneously, many would have been produced also by
a recoding procedure, for much the same reasons.

Second, we can make a probabilistic argument. Most
of the stems used will probably be fairly long—long
enough so that there are unlikely to be many matches
within two letters. Any Sj found by searching with S2
stands a good chance of being related to S2, and thus
to S1.

In short, while a partial-matching procedure may
produce no fewer wrong matches than recoding, it will
probably produce more right ones. It is inherently more
flexible than recoding rules; all classes of exceptions
do not have to be specified beforehand. Part of this flexi-
bility results from allowing S1 and Sj to differ in length
by two letters in either direction. Yet this condition also
provides a built-in barrier against certain types of
wrong matches, as the following example illustrates:

Convex is recoded to convic by the rule ex → ic; con-
vict, the stem of conviction, is recoded to convic by the
rule ct → c. This erroneous match is not allowed in
partial matching, since although condition (4) is satis-
fied, condition (1) is not.

Partial matching is a kind of controlled recoding; the
recoding takes place only if a partial, but not complete,
match is found. The original stem is still preserved,
however, providing a constant check for violation of
condition (1).

Using partial matching as a substitute for recoding
does have one major disadvantage for a system using
disk storage, as Intrex does, and it is a potentially seri-
ous one. In some cases, the time-consuming retrieval
from the disk of a great number of partial matches,
those beginning with S2, will be necessary. These cases
are most likely to occur with very short stems. The
question is whether in such instances S2 can be length-
ened (made closer to S1) enough to avoid this problem
and still retrieve all acceptable matches. Empirical data
are needed to answer this question, as well as to de-
termine whether the number of short stems used is great
enough to warrant concern. Any timing, programming,
or other complications which partial matching intro-
duces must be small enough to be balanced out by
other advantages it may offer.

28 LOVINS

VI. The Two-Phase Stemming Routine
and Its Results

Several progressively more advanced versions of the
Intrex stemming routine have been coded in AED (a
compiler language developed at the Electronic Systems
Laboratory) [7, pp. 367-85] and run on sample batches
of words, using the MIT 7094 CTSS system. The flow
chart in Figure 1 shows the most important features of
the stemming and recoding parts of the program.

While a full evaluation of this stemming system
within the Project Intrex environment will not be pos-
sible until the augmented catalogue data base is com-
pleted, output so far indicates that the procedures used
are workable and will yield very good results with only
minor changes. These changes involve the list of end-
ings and occasionally the recoding rules; the types of
operations performed remain the same.

To give some idea of the alterations that are needed
to make the system highly effective, I shall discuss
several of the changes that have been made in the pro-
gram. Figure 2 shows the result of stemming several
groups of related words. An obvious problem was that
"magnet" and "magnesium" had the same recoded
stem. This problem was easy to fix by changing recoding
rule 32 from et → es to et → es except following n.

An additional recoding rule took care of the discrep-
ancy between meter→ meter and metric → metr:metr
→ meter. All other changes involved the stemming pro-
cedure: -ium, -ite, and -itic were added to the list of
endings, with the stipulation that -ite be removed only
in certain rather limited cases and -itic only after t or ll;
the rule governing -al- endings was changed so that they
are not removed after met-; l was added to the list of
stem-final consonants to be undoubled; and the context
in which the removal of -on is allowable was broadened
to include single t. The results after these changes are
shown in Figure 3. It is expected that several more such
evaluations of a random group-sample will catch most
similar difficulties still left in the program, although it
is likely that minor revisions will be required as long as
the vocabulary of the data base continues to increase.

DEVELOPMENT OF A STEMMING ALGORITHM

29

* The capital letters after each letter-group are a condition
code, not part of the ending itself. For key, see Appendix B.

NOTE.—ß stands for a blank. Stems are assumed to occur in
a field of blanks.

Received October, 1967
Revised November, 1968

References
1. Dyson, G. M. "Computer Input and the Semantic Or-

ganization of Scientific Terms." Information Storage and
Retrieval (April 1967), pp. 35-115.

2. Earl, Lois L. "Part-of-Speech Implications of Affixes."
Mechanical Translation and Computational Linguistics,
vol. 9, no. 2 (June 1966).

3. Earl, Lois L. "Structural Definition of Affixes from Multi-
syllable Words." Mechanical Translation and Computa-
tional Linguistics, vol. 9, no. 2 (June 1966).

4. Lejnieks, Valdis. "The System of English Suffixes." Lin-
guistics 29 (February 1967):80-104.

5. Overhage, Carl F. J. "Plans for Project Intrex." Science
152 (May 20, 1966): 1032-37.

30 LOVINS

6. Resnikoff, H. L., and Dolby, J. L. "The Nature of Affix-
ing in Written English." Part I: Mechanical Translation
and Computational Linguistics, vol. 8, no. 3 (June
1965); Part II: Mechanical Translation and Computa-
tional Linguistics, vol. 9, no. 2 (June 1966).

7. Ross, Douglas T. "The Automated Engineering Design
(AED) Approach to Generalized Computer-aided De-
sign." Proceedings of the 22d National Conference, As-
sociation for Computing Machinery. Washington, D.C.:
Thompson Book Co., 1967.

8. Normal and Reverse Word List. Compiled under the di-
rection of A. F. Brown at the University of Pennsylvania,
under a contract with the Air Force Office of Scientific
Research (AF 49 [638]-1042), Department of Linguis-
tics, Philadelphia, 1963.

9. Salton, Gerard. Automatic Information Organization and
Retrieval. New York: McGraw-Hill, 1968.

10. Salton, Gerard, and Lesk, M. E. "The SMART Automatic
Document Retrieval System." Communications of the
ACM, vol. 8, no. 6 (June 1965).

DEVELOPMENT OF A STEMMING ALGORITHM 31

