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Development of a Stemming Algorithm* 

by Julie Beth Lovins,† Electronic Systems Laboratory, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139 

A stemming algorithm, a procedure to reduce all words with the same 
stem to a common form, is useful in many areas of computational lin- 
guistics and information-retrieval work. While the form of the algorithm 
varies with its application, certain linguistic problems are common to any 
stemming procedure. As a basis for evaluation of previous attempts to deal 
with these problems, this paper first discusses the theoretical and practical 
attributes of stemming algorithms. Then a new version of a context-sensi- 
tive, longest-match stemming algorithm for English is proposed; though 
developed for use in a library information transfer system, it is of general 
application. A major linguistic problem in stemming, variation in spelling 
of stems, is discussed in some detail and several feasible programmed so- 
lutions are outlined, along with sample results of one of these methods. 

I.  Introduction 
A stemming algorithm is a computational procedure 
which reduces all words with the same root (or, if pre- 
fixes are left untouched, the same stem) to a common 
form, usually by stripping each word of its derivational 
and inflectional suffixes. Researchers in many areas of 
computational linguistics and information retrieval find 
this a desirable step, but for varying reasons. In auto- 
mated morphological analysis, the root of a word may 
be of less immediate interest than its suffixes, which can 
be used as clues to grammatical structure. (See, e.g., Earl 
[2, 3] and Resnikoff and Dolby [6]. This field has also 
been reported on by S. Silver and M. Lott, Machine 
Translation Project, University of California, Berkeley 
[personal communication].) At the other extreme, what 
suffixes are found may be subsidiary to the problem of 
removing them consistently enough to obtain sets of 
exactly matching stems. Word-frequency counts using 
stems, for stylistic (as described by S. Y. Sedelow [per- 
sonal communication]) or mathematical analysis of a 
body of language, often require matched stems. (So 
does stemming as part of an information-retrieval sys- 
tem, the specific application which motivated this pa- 
per. ) But certain linguistic problems are common to any 
"stem-oriented" stemming algorithm, no matter what 
its ultimate use. The brief description below of the 
framework within which Project Intrex is planning to 
use 
a stemming algorithm should be viewed as but one pos- 
sible application for research on the morphological 
structure of English  and  other languages.    Similarly, a 
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variety of applications are considered in evaluating the 
theoretical and practical attributes of several previous 
algorithms. 

As a major part of its information transfer experi- 
ments, Project Intrex [5] is developing an integrated re- 
trieval system in which a library user, through a remote 
computer terminal, can first obtain extensive informa- 
tion from a central digital store about documents that 
are available on a specific subject, and then obtain the 
full text of the documents. A prototype retrieval system 
is being assembled in order to permit experimentation 
with its various components. The experimental system 
will use a specially compiled augmented library cata- 
logue containing information on approximately 10,000 
documents in the field of materials science and engi- 
neering, including not only author, title, and other basic 
data about each document but also an abstract, bibliog- 
raphy, and a list of subject terms indicating the content 
of the document. Each subject term is a phrase of one 
or more English words. A stemming algorithm will be 
used to maximize the usefulness of the subject terms. 
In many cases, the information which is semantically 
significant to the user of the system is contained in the 
stems of the lexical words in the subject terms, and 
suffixes and function words merely enable this informa- 
tion to be expressed in a grammatical form. The form 
of the words which the user inputs will often not corre- 
spond to that of the original words in the catalogue. To 
permit the words in the user's query to match the words 
in the catalogue entry's subject terms, both query and 
subject terms can be stripped of the suffixes that prevent 
their matching. For example, computational and com- 
puting might both be stemmed to comput. 

In constructing the software needed for this particu- 
lar application of stemming (or any other), we encoun- 
ter questions which are answerable only in terms of the 
over-all system. For instance, what should constitute a 
"word" to be stemmed? In the case of Intrex, what suf- 
fixes should the algorithm search for that are specifically 
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oriented toward terms in materials science and engi- 
neering? These are questions of less general interest 
than the linguistic problems of extracting a stem from 
any one word in a non-specialized vocabulary (for an 
example of lists of affixes taken from terms in specific 
technical fields, see Dyson [1]). The development of an 
efficient algorithm should logically precede investigation 
of these questions, and they will not be discussed further 
here. 

The approach to stemming taken here involves a two- 
phase stemming system. The first phase, the stemming 
algorithm proper, retrieves the stem of a word by re- 
moving its longest possible ending which matches one 
on a list stored in the computer. The second phase 
handles "spelling exceptions," mostly instances in which 
the "same" stem varies slightly in spelling according to 
what suffixes originally followed it. For example, ab- 
sorption will be output from phase one as absorpt, ab- 
sorbing as absorb. The problem of the spelling excep- 
tions, which in the above example involves matching 
absorpt and absorb, is discussed thoroughly in Section V 
of this paper. One particular solution to the problem, 
termed recoding, has been implemented in the present 
phase two. We also plan to use the present basic algo- 
rithm as a foundation in testing out other feasible so- 
lutions.1 This plan is appropriate because spelling-ex- 
ception rules can, and probably should, be formulated 
independently of the stemming algorithm proper. 

II. Stemming, Form, and Meaning 
By its computational nature, a stemming algorithm has 
inherent limitations. The routine handles individual 
words: it has no access to information about their gram- 
matical and semantic relations with one another. In 
fact, it is based on the assumption of close agreement of 
meaning between words with the same root. This as- 
sumption, while workable in most cases, in English rep- 
resents an approximation at best. It is a better or worse 
approximation depending on the intended use of the 
stems, the semantic vagaries of individual roots, and the 
strength of the algorithm (how radically it transforms 
words). A stemming algorithm strong enough to group 
together all words with the same root may be unsuit- 
able for, say, word-frequency counting. For such appli- 
cations one would not wish a pair like neutron-.neutral- 
izer to coincide, and one would prefer to work with a 
very limited list of suffixes. 

Where stems are used as a means of associating re- 
lated items of information, as they are in an automated 
library catalogue, and where the catalogue can be in- 
terrogated in an on-line mode, it seems best to use a 
strong algorithm, that is, one that will combine more 
words into the same group rather than fewer, thus pro- 
viding more document references rather than fewer. 

1 I am indebted to Richard S. Marcus and Peter Kugel for 
valuable discussion of this specific problem and of this report 
as a whole. 

After a word in the library user's query has been 
stemmed and a matching stem and associated list of 
full-word forms has been found in the catalogue and 
presented to the user, he may decide to discard some of 
these forms in order to inhibit searching for those full- 
word forms which are unrelated to his subject. 

Occasionally, the output of a stemming routine may 
be not only ambiguous but also "not English." This hap- 
pens when a suffix is identical to the end of some root. 
For instance, -ate is a noun suffix in directorate, but 
simply part of a verbal root in create and appreciate. 
In English, situations of this type limit the use of suf- 
fixes as clues to parts of speech. Sometimes grammatical 
information is required for stemming, not provided by it. 

However, the generation of such non-linguistic stems 
as cre- and appreci- is not a serious problem; if the pur- 
pose of stemming is only to allow related words to 
match, then the stems yielded by a stemming algorithm 
need not coincide with those found by a linguist. The 
exact form of the stem is not critical if it is the same 
no matter what suffixes have been removed following it, 
and if "mistaken" stemming does not generate an am- 
biguity. Similarly, the ending that must be removed 
in order to achieve a consistent algorithm is determined 
in relation to the stemming system as a whole. The end- 
ing may or may not be exactly equivalent to some en- 
tity in English morphology, and it may be acceptable 
to have the computer program remove it when a linguist 
would not, with no detriment to the ultimate results. 

III.  Types of Stemming Algorithms 
Two main principles are used in the construction of a 
stemming algorithm: iteration and longest-match. An 
algorithm based solely on one of these methods often 
has drawbacks which can be offset by employing some 
combination of the two principles. 

Iteration is usually based on the fact that suffixes are 
attached to stems in a "certain order, that is, there exist 
order-classes of suffixes (see, e.g., Lejnieks [4]). Each 
order-class may or may not be represented in any given 
word. The last order-class—the class that occurs at the 
very end of a word—contains inflectional suffixes such as 
-s, -es, and-ed. Previous order-classes are derivational. 
(As pointed out by J. L. Dolby [personal communica- 
tion], there are several cases known in which a deriva- 
tional suffix (-ness) follows an inflectional one (-ed or 
-ing). This occurs with certain nominalized adjectives 
derived from verbs by use of one of these two inflec- 
tional endings, for example, relatedness, disinterested- 
ness, willingness.) An example of the lowest order-class 
in a word may be what is technically part of the root 
(see the -ate example above), but for the purposes of 
computation it is considered part of the ending. An 
iterative stemming algorithm is simply a recursive pro- 
cedure, as its name implies, which removes strings in 
each order-class one at a time, starting at the end of a 
word and working toward its beginning. No more than 
one  match   is  allowed  within   a  single  order-class,  by 
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definition. One must decide how many order-classes 
there should be, which endings should occur in each, 
and whether or not the members of each class should be 
internally ordered for scanning. 

The longest-match principle states that within any 
given class of endings, if more than one ending provides 
a match, the one which is longest should be removed. 
This principle is implemented by scanning the endings 
in any class in order of decreasing length. For example, 
if -ion is removed when there is also a match on -ation, 
provision would have to be made to remove -at, that is, 
for another order-class. To avoid this extra order-class, 
-ation should precede -ion on the list. 

An algorithm based strictly on the longest-match prin- 
ciple uses only one order-class. All possible combina- 
tions of affixes are compiled and then ordered on length. 
If a match is not found on longer endings, shorter ones 
are scanned. The obvious disadvantage to this method 
is that it requires generating all possible combinations 
of affixes. A second disadvantage is the amount of stor- 
age space the endings require. 

The first disadvantage may also be present to a large 
degree when one is setting up an iterative algorithm 
with as many order-classes as possible. To set up the 
order-classes, one must examine a great many endings. 
Furthermore, it is not always obvious to which class a 
given string should belong for maximum efficiency. It is 
also entirely possible that the occurrence of members of 
some classes is context dependent (see below). In short, 
while an iterative algorithm requires a shorter list of 
endings, it introduces a number of complications into 
the preparation of the list and programming of the rou- 
tine. 

Some idea of the breadth of these complications is 
gained through consideration of another basic attribute 
of a stemming algorithm: it is context free or context 
sensitive. Since "context" is used here to mean any 
attribute of the remaining stem, "context free" implies 
no qualitative or quantitative restrictions on the removal 
of endings. In a context-free algorithm, the first ending 
in any class which achieves a match is accepted. But 
there should presumably be at least some quantitative 
restriction, in the sense that the remaining stem must 
not be of length zero. An example of this extreme case 
is the matching of -ability to ability as well as to com- 
putability. In fact, any useful stem usually consists of 
at least two letters, and often three or four constitute 
a necessary minimum. The restriction on stem length 
varies with the ending; how it varies can again only 
be determined in relation to the total system. The algo- 
rithm developed by Professor John W. Tukey of Prince- 
ton University (personal communication) associates a 
lower limit with each ending. Some of his limits are 
quite high (e.g., seven letters). I have been less con- 
servative and have proposed a minimum stem length of 
two; certain endings have an additional restriction in 
that their minimum stem length is three, four, or five 
letters. 

The  kind  of  qualitative  contextual  restrictions   that 

should be imposed is a somewhat open question. In 
order to get the best results, certain endings should not 
be removed in the presence of certain letters in the re- 
sultant stem, usually those letters that immediately pre- 
cede the ending. The more desirable form of context- 
sensitive rule is a general one that can be applied to a 
number of endings, but such rules are few. One exam- 
ple is "do not remove an ending that begins with -en-, 
following -e." Violation of this rule would change seen 
to se-, a potentially ambiguous stem (cf. sea minus -a, 
seize minus -ize, etc.). But a number of rules must be 
created for individual endings in order to avoid certain 
special cases peculiar to those endings. One can go to 
great lengths in this direction, with increasingly small 
returns. I have preferred to start by treating a number 
of the more obvious exceptions in the hope that the per- 
centage of words not accounted for will be small enough 
to preclude the need to add many additional rules. 

An iterative stemming algorithm, that is, one that 
contains more than one order-class of endings, is pre- 
sumably no less complicated by context-sensitive rules 
than a one-class algorithm, and is probably more so; 
exceptions associated with the members of each class 
may depend on a rather complicated context. For ex- 
ample, suppose there is a rule (in a non-iterative algo- 
rithm) stating that minimal stem length is five before 
-ionate. The endings -ion and -ate occur separately, 
also, with different restrictions. In an iterative routine, 
-ion and -ate would only occur as separate endings, in 
different order-classes; and -ion would be restricted by 
the rule that its preceding context must be of length 
five if -ate was found during the preceding iteration. In 
other words, the endings that are removed may influ- 
ence the lower-order endings that can be removed sub- 
sequently. The implications for simplicity in program- 
ming are self-evident. In a pure longest-match algo- 
rithm, the only context that need be considered is the 
prospective stem itself. 

Since computer-storage space for endings was not an 
immediate problem, it was decided to test a non-itera- 
tive stemming algorithm based on a one-class list of 
endings. That is, the intuitively inefficient procedure of 
listing both singular and plural forms, and so on, has 
been followed in order to minimize the number of con- 
text-sensitive rules necessary. Compilation of the actual 
list of endings used is discussed in the next section; the 
algorithm is outlined in Section VI. 

The author is aware of three previous major attempts 
to construct stemming algorithms. Tukey has proposed 
a context-sensitive, partially iterative stemming algo- 
rithm whose endings are divided into four order-classes. 
The first (highest-order) class contains only terminal s 
which, however, is not removed after i, s, or u. The 
second class is recursive, the third is non-recursive and 
ordered on length. The fourth class consists of remain- 
ing terminal consonants. The last three classes also have 
a few members each with simple context restrictions, 
and all classes have limits on minimum stem length. 
(The  basic  structure  of  this  "tail-cropping"  algorithm 
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is not affected by its multilingual orientation, though 
the endings used would obviously differ from those 
found in a procedure for English only.) 

One of the more interesting things about the Tukey 
system is its structural complexity. One class uses the 
longest-match principle only, while another is iterative 
(and thus not a proper order-class). Presumably the 
object of this heterogeneous structure is to avoid the 
repetitiveness of a one-class ending list in the most con- 
cise way possible. However, as stated earlier, there is a 
compromise between conciseness of rules and simplicity 
of programming. 

By contrast, the algorithm developed at Harvard Uni- 
versity by Michael Lesk, under the direction of Professor 
Gerard Salton [10], is based on an iterated search for 
a longest-match ending. After no more matches can be 
found, terminal i, a, and e are removed, and then pos- 
sibly terminal consonants. There are apparently no con- 
textual restrictions of any kind. (A brief description of 
the algorithm, including a useful list of 194 endings, 
was transmitted to us via personal communication. A 
sample of these suffixes, and further information about 
the algorithm, have more recently appeared in Salton 
[9].) 

A third algorithm has been developed by James L. 
Dolby of R and D Consultants, Los Altos, California 
(personal communication). This algorithm works in three 
stages, the first of which involves a set of context- 
dependent transformations. Most of the cropping is done 
in the second stage, a context-free, longest-match, re- 
cursive procedure which removes endings in any order 
but is subject to the restriction of a two-syllable mini- 
mum stem length. In the final stage there is a context- 
dependent dropping of inflectional forms. The endings 
used were derived by algorithm from word lists on the 
basis of orthographic context, and are "minimal" seg- 
ments of one to four letters in length. 

IV.  Compilation of a List of Endings 
A one-class list of endings (concatenations of suffixes) 
was compiled in the following way: A preliminary list 
was based on endings found in a small portion of the 
augmented catalogue being developed by Project Intrex 
and on endings in the list used at Harvard. The pre- 
liminary list was evaluated by applying the endings on 
this list to a portion of the output from Tukey's tail- 
cropping routine, levels 1-3, and volumes 5-7 of the 
Normal and Reverse English Word List [8] (volumes 
5-7 contain unbroken words sorted alphabetically when 
written from right to left). Since each of these lists is 
organized according to ends of words, it was possible 
to see whether the removal of a given ending would 
result in (1) two different stems matching, or (2) a 
stem not matching another stem which it should match. 
Either of these conditions, unless it was caused by a 
spelling exception or caused improper matching in only 
a few rare cases, necessitated the addition of new end- 
ings, the disposing of old ones, or the addition of context- 

sensitive rules, until the system seemed adequately self- 
consistent. The resultant experimental list contained 
about 260 endings, divided into eleven subsets; the sub- 
sets are ordered in disk storage in accordance with de- 
creasing length of the endings and are internally alpha- 
betized for easy handling. The internal order does not 
affect the end result of the algorithm. Each subset is 
preceded by a special heading giving the length of the 
endings in it; each ending is followed by a condition 
code and a carriage return as delimiter. The condition 
code consists of a letter of the alphabet containing 
information about contextual restrictions on the stem 
preceding the ending. 

The present list of endings, which is a slightly modi- 
fied version of the original one (see Section VI), is 
given in Appendix A; the context-sensitive tests associ- 
ated with the endings are listed in Appendix B. 

V.   Some Cures for "Spelling Exceptions" 
The term "spelling exceptions" is a catchall term cover- 
ing all cases in which a stem may be spelled in more 
than one way. The majority of such variations in En- 
glish occur in Latinate derivations. The examples given 
below show some of the range and type of variations 
that may occur. Trouble spots are italicized; the stem 
is separated from the ending by a vertical bar. 

produc|er : product|ion invert|ed : invers|ion 
induc|ed : induct|ion adher|e : adhes|ion 
induct|ed : induct|ion register|ing : registr|ation 
consum|ed : consumpt|ion resolv|ed : resolut|ion 
absorb|ing : absorpt|ion admitt|ed : admiss|ion 
attend|ing : attent|ion circl|e : circul|ar 
expand|ing : expans|ion matrix| : matric|es 
respond| : respons|ive lattic|e : lattic|es 
exclud|e : exclus|ion index| : indic|es 
collid|ing : collis|ion hypothes|ized : hypothet|ical 

analys|is : analyt|ic 

Several other types of spelling exceptions also occur, 
such as the doubling of certain consonants before a 
suffix (input:inputting), and contrasting British and 
American spellings (analysed:analyzed). 

While the derivational spelling changes do occur only 
before certain endings, this set of endings is usually 
quite large. Thus it is not practical to consider the ex- 
ceptional stem-terminal consonants as part of the end- 
ings in a one-class algorithm such as the one we are 
using; the number of extra endings that must be in- 
cluded to do so is prohibitive. Two major types of post- 
stemming procedures may be followed to take care of 
the exceptions, however. I shall call them recoding and 
partial matching. (Salton [9, p. 82] describes a routine 
which includes some attributes of each of the procedures 
discussed below. While it will take care of such prob- 
lems as consonant doubling, it does not appear to have 
been formulated as a general solution to the trickier 
types of spelling exceptions.) 

A  recoding  procedure  is  properly  part  of  the stem- 
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ming routine itself, although it introduces an element 
of iteration into it. Recoding occurs immediately fol- 
lowing the removal of an ending and makes such 
changes at the end of the resultant stem as are neces- 
sary to allow the ultimate matching of varying stems. 
These changes may involve turning one stem into an- 
other (e.g., the rule rpt → rb changes absorpt to ab- 
sorb), or changing both stems involved by either re- 
coding their terminal consonants to some neutral ele- 
ment (absorb → absorß, absorpt → absorß), or remov- 
ing some of these letters entirely, that is, changing them 
to nullity (absorb → absor, absorpt → absor). 

In proposing a recoding procedure, one makes the 
assumption that most of the spelling changes that occur 
can be adequately covered by a small set of context- 
sensitive transformational rules—that the exceptions are 
predictable enough so that the number of "accidental" 
transformations is not sufficiently great to distort the 
whole stemming system. An example of such an acci- 
dental transformation is send → sens, generated by the 
rule end → ens. This rule was originally intended to 
take care of such pairs as extend:extensive, but instead 
it has made the stem sens ambiguous (it now stands for 
both send and sense). Fortunately the ambiguity can 
be resolved by changing the rule to "end → ens except 
following s"; but this type of solution may not be pos- 
sible in all cases. 

This assumption of a large amount of regularity in 
spelling changes appears to be a sound one. However, 
the exceptions are not totally predictable (i.e., not al- 
ways dependent on immediate orthographic context); 
therefore a certain number of mistakes will result, which 
must be balanced against the favorable attributes of the 
method, like its speed. 

It is important to note that the rules used in recoding 
should be not only context-sensitive but also ordered. 
Suppose we have the two rules: 

1. Remove one of double b, d, g, m, n, p, r, s, t. 
2. Turn terminal d, r, t, z into s. 

The second rule is intended to take care of collide: 
collision, etc. Now suppose we have the words admit- 
tance and admission. The first is stemmed to admitt, 
the second to admiss. If the rules are applied in the 
order given, admitt → admit → admis and admiss 
→ admis; if they were reordered, however, the result 
would be admitt → admits, admiss → admis, which is 
incorrect. 

A more complete set of recoding rules of the type 
exemplified above is given in Appendix C. These rules 
are subject to revision, of course; it would also be de- 
sirable to contrast their results with those produced by 
neutralizing or nullifying transformations (see above). 

The second kind of cure for spelling exceptions, par- 
tial matching, is methodologically quite different from 
recoding. Yet the basic assumptions, and the results, 
may be similar. The first assumption is that spelling 
changes  in  English  are restricted to certain types which 

may occur, but do not always occur. The second as- 
sumption is that these changes involve no more than 
two letters at the end of a stem--this is merely an em- 
pirical result which has not yet been contradicted. It has 
also been observed that the sequences of letters that 
cause difficulty are often common to more than one class 
of exceptions. In recoding, this means that some rules 
can cover more than one type of exception, although 
it is not usually the case. 

The crucial difference between recoding and partial 
matching is this: a recoding procedure is part of the 
stemming algorithm while a partial-matching procedure 
is not. Partial matching operates on the output from the 
stemming routine at the point where the stems derived 
from catalogue terms are being searched for matches 
to the user's stemmed query. All partial matches, within 
certain limits, are retrieved rather than just all perfect 
matches; discrepancies are resolved after retrieval, not 
in the previous stemming procedure. This has the ad- 
vantages of reducing stemming to the one-step process 
of removing an ending and of eliminating the context 
specifications sometimes needed in recoding. The dis- 
advantages, which are not so obvious, can be discussed 
only after a more complete description of a partial- 
matching procedure is given. 

Such a procedure starts with an unmodified stem S1 
—again, absorpt is a good example. The first step is to 
search the list of stemmed catalogue terms for all those 
which begin with S1 minus its last two letters: in this 
case, all stems of any length beginning with absor, 
which we call S2. Of course, special provisions will have 
to be made for cases in which S1 is only two or three 
letters long. Among those stems returned will be absorpt 
and absorb. Absorbefaci, the stem of absorbefacient, 
may also be found. This last item will be eliminated, 
probably for the better, by the next step of the pro- 
cedure, which discards all stems more than two charac- 
ters longer than S1 (here, more than nine letters long). 
We then have collected all stems which match absorpt 
within two letters in either direction. Given any one of 
these, Sj, a final match is allowed between Sj and S1 if 
and only if either Sj = S1 or the following conditions 
are satisfied: 
1. The stems Sj and S1 must match at least up to two letters 

before the end of the longer of them. 
2. If Sj and S1 are the same length and differ by one letter, 

this letter plus a blank must occur on a closed list (see 
Appendix D) for each stem. 

3. If Sj and S1 are the same length and differ by two letters, 
each sequence of two letters must occur on the list. 

4. If Sj and S1 differ in length by one, the last two letters of 
the longer, and the last of the shorter plus a blank, must 
occur on the list. 

5. If Sj and S1 differ in length by two, the last two letters of 
the longer must occur on the list. 

The above rules amount essentially to examining the 
last two letters of stems that match up to that point; 
if  the   stems   are  different  lengths,  all  "missing  letters" 
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in the shorter are represented by blanks. The "closed list" 
needed for this routine is given in Appendix D. 

It may appear that an unacceptable number of 
"wrong" matches would result from this procedure, 
since there are no restrictions on which pairs of items 
on the list may be used to produce a match. There are 
two defenses against this view: 

First, such a closed list does exist. Many partial 
matches will not be allowed. Of those that are allowed 
erroneously, many would have been produced also by 
a recoding procedure, for much the same reasons. 

Second, we can make a probabilistic argument. Most 
of the stems used will probably be fairly long—long 
enough so that there are unlikely to be many matches 
within two letters. Any Sj found by searching with S2 
stands a good chance of being related to S2, and thus 
to S1. 

In short, while a partial-matching procedure may 
produce no fewer wrong matches than recoding, it will 
probably produce more right ones. It is inherently more 
flexible than recoding rules; all classes of exceptions 
do not have to be specified beforehand. Part of this flexi- 
bility results from allowing S1 and Sj to differ in length 
by two letters in either direction. Yet this condition also 
provides a built-in barrier against certain types of 
wrong matches, as the following example illustrates: 

Convex is recoded to convic by the rule ex → ic; con- 
vict, the stem of conviction, is recoded to convic by the 
rule ct → c. This erroneous match is not allowed in 
partial matching, since although condition (4) is satis- 
fied, condition (1) is not. 

Partial matching is a kind of controlled recoding; the 
recoding takes place only if a partial, but not complete, 
match is found. The original stem is still preserved, 
however, providing a constant check for violation of 
condition (1). 

Using partial matching as a substitute for recoding 
does have one major disadvantage for a system using 
disk storage, as Intrex does, and it is a potentially seri- 
ous one. In some cases, the time-consuming retrieval 
from the disk of a great number of partial matches, 
those beginning with S2, will be necessary. These cases 
are most likely to occur with very short stems. The 
question is whether in such instances S2 can be length- 
ened (made closer to S1) enough to avoid this problem 
and still retrieve all acceptable matches. Empirical data 
are needed to answer this question, as well as to de- 
termine whether the number of short stems used is great 
enough to warrant concern. Any timing, programming, 
or other complications which partial matching intro- 
duces must be small enough to be balanced out by 
other advantages it may offer. 

  

28 LOVINS 



VI. The Two-Phase Stemming Routine 
and Its Results 

Several progressively more advanced versions of the 
Intrex stemming routine have been coded in AED (a 
compiler language developed at the Electronic Systems 
Laboratory) [7, pp. 367-85] and run on sample batches 
of words, using the MIT 7094 CTSS system. The flow 
chart in Figure 1 shows the most important features of 
the stemming and recoding parts of the program. 

While a full evaluation of this stemming system 
within the Project Intrex environment will not be pos- 
sible until the augmented catalogue data base is com- 
pleted, output so far indicates that the procedures used 
are workable and will yield very good results with only 
minor changes. These changes involve the list of end- 
ings and occasionally the recoding rules; the types of 
operations performed remain the same. 

To give some idea of the alterations that are needed 
to make the system highly effective, I shall discuss 
several of the changes that have been made in the pro- 
gram. Figure 2 shows the result of stemming several 
groups of related words. An obvious problem was that 
"magnet" and "magnesium" had the same recoded 
stem. This problem was easy to fix by changing recoding 
rule 32 from et → es to et → es except following n. 

An additional recoding rule took care of the discrep- 
ancy between meter→ meter and metric → metr:metr 
→ meter. All other changes involved the stemming pro- 
cedure: -ium, -ite, and -itic were added to the list of 
endings, with the stipulation that -ite be removed only 
in certain rather limited cases and -itic only after t or ll; 
the rule governing -al- endings was changed so that they 
are not removed after met-; l was added to the list of 
stem-final consonants to be undoubled; and the context 
in which the removal of -on is allowable was broadened 
to include single t. The results after these changes are 
shown in Figure 3. It is expected that several more such 
evaluations of a random group-sample will catch most 
similar difficulties still left in the program, although it 
is likely that minor revisions will be required as long as 
the vocabulary of the data base continues to increase. 
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* The capital letters after each letter-group are a condition
code, not part of the ending itself. For key, see Appendix B. 



NOTE.—ß stands for a blank. Stems are assumed to occur in 
a field of blanks. 
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