
[Mechanical Translation and Computational Linguistics, vol.8, nos.3 and 4, June and October 1965]
Automatic Paraphrasing in Essay Format*

by Sheldon Klein, Carnegie Institute of Technology and System Development Corporation

An automatic essay paraphrasing system, written in JOVIAL, produces
essay-like paraphrases of input texts written in a subset of English. The
format and content of the essay paraphrase are controlled by an outline
that is part of the input text. An individual sentence in the paraphrase
may often reflect the content of several sentences in the input text.

The system uses dependency rather than transformational criteria,
and future versions of the system may come to resemble a dynamic im-
plementation of a stratificational model of grammar.

Introduction

This paper describes a computer program, written in
JOVIAL for the Philco 2000 computer, that accepts as
input an essay of up to 300 words in length and yields
as output an essay-type paraphrase that is a summary
of the content of the source text. Although no trans-
formations are used, the content of several sentences
in the input text may be combined into a single sen-
tence in the output. The format of the output essay
may be varied by adjustment of program parameters.
In addition, the system occasionally inserts subject or
object pronouns in its paraphrases to avoid repetitious
style.

The components of the system include a phrase
structure and dependency parser, a routine for estab-
lishing dependency links across sentences, a program
for generating coherent sentence paraphrases randomly
with respect to order and repetition of source text sub-
ject matter, a control system for determining the logical
sequence of the paraphrase sentences, and a routine
for inserting pronouns.

The present version of the system requires that in-
dividual word class assignments be part of the infor-
mation supplied with a source text, and also that the
grammatical structure of the sentences in the source
conform to the limitations of a very small recognition
grammar. A word class assignment program and a more
powerful recognition grammar will be added to a
future version of the system.

A Dependency and Phrase Structure Parsing System

The parsing system used in the automatic essay writing
experiments performed a phrase structure and depen-
dency analysis simultaneously. Before describing its
operation it will be useful to explain the operation of
a typical phrase structure parsing system.

Cocke of I.B.M., Yorktown, developed a program for
the recognition of all possible tree structures for a
given sentence. The program requires a grammar of
binary formulas for reference. While Cocke never
* This research is supported in part by the Public Health Service
Grant MH 07722, from the National Institute of Mental Health to
Carnegie Institute of Technology.

wrote about the program himself, others have de-
scribed its operation and constructed grammars to be
used with the program.1,2

The operation of the system may be illustrated with
a brief example. Let the grammar consist of the rules
in Table 1; let the sentence to be parsed be:

A B C D

The grammar is scanned for a match with the first
pair of entities occurring in the sentence. Rule 1 of
Table 1, A + B = P, applies. Accordingly A and B
may be linked together in a tree structure and their
linking node labeled P.

But the next pair of elements, B + C, is also in

Table 1. This demands the analysis of an additional
tree structure.

1. A + B = P
2. B + C = Q
3. P + C = R
4. A + Q = S
5. S + D = T
6. R + D = U

TABLE 1
ILLUSTRATIVE RULES FOR COCKE'S PARSING SYSTEM]

These two trees are now examined again. For tree

(a), the sequence P + C is found in Table 1, yield-
ing:

68

The analysis has yielded two possible tree structures
for the sentence, ABC D. Depending upon the
grammar, analysis of longer sentences might yield hun-
dreds or even thousands of alternate tree structures.

Alternatively, some of the separate tree structures
might not lead to completion. If grammar rule 6 of
Table 1, R + D = U, were deleted, the analysis of
sentence (a) in the example could not be completed.
Cocke's system performs all analyses in parallel and
saves only those which can be completed.

The possibility of using a parsing grammar as a gen-
eration grammar is described in the section entitled
“Generation.”

PHRASE STRUCTURE PARSING WITH SUBSCRIPTED RULES

The phrase structure parsing system devised by the
author makes use of a more complex type of grammati-
ical formula. Although the implemented system does
mat yield more than one of the possible tree structures
for a given sentence (multiple analyses are possible
with program modification) it does contain a device

that is an alternative to the temporary parallel analyses
of trees that cannot be completed.

The grammar consists of a set of subscripted phrase
structure formulas as, for example, in Table 2. Here
'N' represents a noun or noun phrase class, 'V a verb
or verb phrase class, 'Prep' a preposition class, 'Mod' a
prepositional phrase class, 'Adj' an adjective class, and
'S' a sentence class. The subscripts determine the order
and limitations of application of these rules when gen-
erating as well as parsing. The use of the rules in pars-

1. Art0 + N2 = N3
2. Adj0 + N3 = N2
3. N1 + Mod1 = N1
4. V1 + N2 = V2
5. Prep0 + N3 = Mod1
6. N3 + V3 = S1
 TABLE 2

 PHRASE STRUCTURE RULES

ing may be illustrated by example.
Consider the sentence:

'The fierce tigers in India eat meat.'

Assuming one has determined the individual parts
of speech for each word:

Art0 Adj0 N0 Prep0 N0 V0 N0

The fierce tigers in India eat meat

The parsing method requires that these grammar codes
be examined in pairs to see if they occur in the left
half of the rules of Table 2. If a pair of grammar codes
in the sentence under analysis matches one of the rules
and at the same time the subscripts of the compo-
nents of the Table 2 pair are greater than or equal to
those of the corresponding elements in the pair in the
sentence, the latter pair may be connected by a single
node in a tree, and that node labeled with the code in
the right half of the rule in Table 2.

Going from left to right (one might start from
either direction), the first pair of codes to be checked
is Art0 + Adj0. This sequence does not occur in the
left half of any rule.

The next pair of codes is Adj0 + N0. This pair
matches the left half of rule 2 in Table 2, Adj0 + N2 =
N2. Here the subscripts in the rule are greater than or
equal to their counterparts in the sentence under anal-
ysis. Part of a tree may now be drawn.

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 69

For tree (b), the pair A + Q is found in Table 1,
but not the sequence Q -f D. The result here is:

Further examination of tree (a) reveals that R + D
is an entry in Table 1.

In tree (b), S + D is found to be in Table 1:

The next pair of codes to be searched for is N0 +
Prep0. This is not to be found in Table 2.

The following pair, Prep0 + N0, fits rule 5, Table 2,
Prep0 + N3 = Mod1. The subscript rules are not vio-
lated, and accordingly, the sentence structure now
appears as:

The next pair of codes, N0 + V0, also appears in Table
2, N3 + V3 = S1. But if these two terms are united,
the N0 would be a member of two units. This is not
permitted, e.g.,

When a code seems to be a member of more than
one higher unit, the unit of minimal rank is the one
selected. Rank is determined by the lowest subscript if
the codes are identical. In this case, where they are
not identical, S1 (sentence) is always higher than a
Mod1 or any code other than another sentence type.
Accordingly, the union of N0 + V0 is not performed.
This particular device is an alternative to the tempo-
rary computation of an alternate tree structure that
would have to be discarded at a later stage of analysis.

The next unit, V0 + N0, finds a match in rule 4 of
Table 2, V1 + N2 = V2, yielding:

One complete pass has been made through the sen-
tence. Successive passes are made until no new units
are derived. On the second pass, the pair Art0 + Adj0,
which has already been rejected, is not considered.
However, a new pair, Art0 + N0, is now found in rule
I of Table 2, Art0 + N2 = N3.

 The tree now appears as:

Continuing, the next pair accounted for by Table 2
is N0 + Mod1, which is within the domain of rule 3,
N1 + Mod1 = N1. Here the subscripts of the grammar
rule are greater than or equal to those in the text en-
tities. Now the No associated with 'tiger' is already
linked to an Adj0 unit to form an N0 unit. However, the
result of rule 3 in Table 2 is an N1 unit. The lower sub-
script takes precedence; accordingly the N2 unit and
the N3 unit of which it formed a part must be dis-
carded, with the result:

On the balance of this scan through the sentence no

new structures are encountered. A subsequent pass will
link Adj0 to N1 producing an N0 unit. Eventually this
No unit will be considered for linkage with V2 to form
a sentence, S1, by rule 6 of Table 2. This linkage is
rejected for reasons pertaining to rules of precedence.

A subsequent pass links Art0 with this N2 to form N3
by rule 1 of Table 2. This N3 is linked to V2 by rule 6
of Table 2.

As the next pass yields no changes, the analysis is
complete. This particular system, as already indicated,
makes no provision for deriving several tree structures
for a single sentence although it avoids the problem of
temporarily carrying additional analyses which are
later discarded.

DEPENDENCY

A phrase structure or immediate constituency analy-
sis of a sentence may be viewed as a description of the
relations among units of varied complexity. A depend-
ency analysis is a description of relations among simple
units, e.g., words. Descriptions of the formal properties

70 KLEIN

of dependency trees and their relationship to immedi-
ate constituency trees can be found in the work of
David Hays,3 and Haim Gaifman.4 For the purpose of
this paper, the notion of dependency will be explained
in terms of the information required by a dependency
parsing program.

The particular system described performs a phrase
structure and dependency analysis simultaneously.
The output of the program is a dependency tree super-
imposed upon a phrase structure tree.

Fundamentally, dependency may be defined as the
relationship of an attribute to the head of the construc-
tion in which it occurs. In exocentric constructions, the
head is specified by definition. Table 3 contains a set
of grammatical rules which are sufficient for both
phrase structure and dependency parsing. A symbol
preceded by an asterisk is considered to be the head
of that construction. Accordingly, in rule 1 of Table 3,
Art0 + *N2 = N3, the Art0 unit is dependent on the N2
unit. In rule 6 of Table 3, *N3 + V3 = S1; the V3 unit
is dependent on the N3 unit.

The method of performing a simultaneous phrase
structure and dependency analysis is similar to the one
described in the previous section. The additional fea-
ture is the cumulative computation of the dependency
relations defined by the rules in the grammar. An ex-
ample will be helpful in illustrating this point.

1. Art0 + *N2 = N3
2. Adj0 + *N2 = N2
3. *N1 + Mod1 = N1
4. *V1 + N2 = V2
5. *Prep0 + N3 = Mod1
6. *N3 + V3 = S1
 TABLE 3

DEPENDENCY PHRASE STRUCTURE RULES

Consider the sentence:

'The girl wore a new hat.'

First the words in the sentence are numbered se-
quentially, and the word class assignments are made.

Art0 N0 V0 Art0 Adj0 N0

The girl wore a new hat

0 1 2 3 4 5

The sequential numbering of the words is used in
the designation of dependency relations. Looking
ahead, the dependency tree that will be derived will
be equivalent to the following:

where the arrows indicate the direction of dependency.
Another way of indicating the same dependency analy-
sis is the list fashion—each word being associated with
the number of the word it is dependent on.

The girl wore a new hat

0 1 2 3 4 5

1 1 5 5 2

Consider the computation of this analysis. The first
two units, Art0 + N0, are united by rule 1 of Table 3,
Art0 + *N2 = N3. The results will be indicated in a
slightly different fashion than in the examples of the
preceding section.

N3(1)____*N3(0)

*Art0 *N0 *V0 *Art0 *Adj0 *N0

The girl wore a new hat

0 1 2 3 4 5

1

All of the information concerning the constructions
involving a particular word will appear in a column
above that word. Each such word and the information
above it will be called an entry. This particular mode
of description represents the parsing as it takes place
in the actual computer program.

The fact that Art0 + N0 form a unit is marked by the
occurrence of an N3 at the top of entries 0 and 1. The
asterisk preceding the N3 at the top of entry 1 indicates
that this entry is associated with the head of the con-
struction. The asterisks associated with the individual
word tags indicate that at this level each word is the
head of the construction containing it. This last fea-
ture is necessary because of certain design factors in
the program.

The numbers in brackets adjacent to the N3 units
indicate the respective partners in the construction.

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 71

Thus the (1) at the top of entry 0 indicates that its
partner is in entry 1, and the (0) at the top of entry
1, the converse. The absence of an asterisk at the top
of entry 0 indicates that the number in brackets at the
top of this entry also refers to the dependency of the
English words involved in the construction; i.e., 'The'
of entry 0 is dependent on 'girl' of entry 1. This nota-
tion actually makes redundant the use of lines to indi-
cate tree structure. They are plotted only for clarity.
Also redundant is the additional indication of depend-
ency in list fashion at the bottom of each entry. This
information is tabulated only for clarity.

The next pair of units accepted for by the program
is Adj0 + N0. These, according to rule 2 of Table 3,
are united to form an N2 unit.

Here 'new' is dependent on 'hat'.
On the next pass through the sentence, the N3 of

entry 1, 'girl', is linked to the V0 of entry 2, 'wore', to
form an S1 unit. It is worth noting that a unit not pre-
faced by an asterisk is ignored in the rest of the pars-
ing.

On the next pass through the sentence, the V0 of

entry 2 is linked to the N3 of entry 5 to form, accord-
ing to rule 4 of Table 3, a V2 unit. The S1 unit, of
which the V0 is already a part, is deleted because the
V0 grouping takes precedence. The result is:

The next pass completes the analysis, by linking the
N3 of entry 1 with the V2 of entry 2 by rule 6 of Table
3.

The new dependency emerging from this grouping
is that of 'wore' upon 'girl'. The Art0 of entry 3 plus
the N2 of entry 5 form the next unit combined, as in-
dicated by rule 1 of Table 3. Note that the N2 of entry
4 can be skipped because it is not preceded by an
asterisk. Adjacent asterisked units are the only candi-
dates for union.

Note again that the dependency analysis may be

read directly from the phrase structure tree; the
bracketed digit associated with the top unasterisked
phrase structure label in each entry indicates the de-
pendency of the word in that entry.

72 KLEIN

The only entry having no unasterisked form at the
top is 1. This implies that 'girl' is the head of the sen-
tence. This choice of the main noun subject instead of
the main verb as the sentence head is of significance in
generating coherent discourse. The reasons for this are
indicated in the section entitled “Coherent discourse.”

The current version of the parsing program has an
additional refinement: rules pertaining to verb phrases
are not applied during early passes through a sentence.
The intention of this restriction is to increase the effi-
ciency of the parsing by avoiding the temporary analy-
sis of certain invalid linkages.

Generation
The discussion of generation is concerned with the

production of both nonsensical and coherent discourse.

GRAMMATICALLY CORRECT NONSENSE
The generation of grammatically correct nonsense may
be accomplished with the same type of phrase struc-
ture rules as in Tables 2, 3 and 4. (The asterisks in
Table 3 are not pertinent to generation.) A computer
program implementing a phrase structure genera-
tion grammar of this sort has been built by Victor
Yngve.5

The rules in Table 4 contain subscripts which, as
in the parsing system, control their order of applica-
tion. The rules may be viewed as rewrite instructions,
except that the direction of rewriting is the reverse of
that in the parsing system.

Starting with the symbol for sentence, S1, N3 + V3
may be derived by rule 6 of Table 4.

Note that a tree structure can be generated in trac-

ing the history of the rewritings. Leftmost nodes are
expanded first. The N3 unit may be replaced by the left
half of rule 1, 2 or 3. If the subscript of the N on the
right half of these rules were greater than 3, they

1. Art0 + N2 = N3
2. Adj0 + N2 = N2
3. N1 + Mod1 = N1
4. V1 + N2 = V2
5. Prep0 + N3 = Mod1
6. N3 + V3 = S1
7. N0 = N1
8. V0 = V1

TABLE 4
ILLUSTRATIVE GENERATION GRAMMAR RULES

would not be applicable. This is the reverse of the con-
dition for applicability that pertained in the parsing

A node with a zero subscript cannot be further ex-
panded. All that remains is to choose an article at
random, say 'the'. The N2 unit can still be expanded.
Note that rule 1 is no longer applicable because the
subscript of the right-hand member is greater than 2.

Suppose rule 2 of Table 4 is selected, yielding:

Now an adjective may be chosen at random, say

'red.' The expansions of N2 are by rule 2 or 3 of Table
4, or by rule 7, which makes it a terminal node. Note
that rule 2 is recursive; that is, it may be used to re-
write a node repeatedly without reducing the value of
the subscript. Accordingly, an adjective string of in-
definitely great length could be generated if rule 2
were chosen repeatedly. For the sake of brevity, next
let rule 7 of Table 4 be selected. A noun may now be
chosen at random, say 'car,' yielding:

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 73

system. Assume rule 1 of Table 4 is selected, yielding:

Let the V3 be written V1 + N2 by rule 4 of Table 4
and that V1 rewritten as V0 by rule 8 of Table 4. Let
the verb chosen for this terminal node be 'eats'.

The only remaining expandable node is N2. Assume
that N0 is selected by rule 7. If the noun chosen for
the terminal node is 'fish' the final result is:

With no restrictions placed upon the selection of
vocabulary, no control over the semantic coherence of
the terminal sentence is possible.

COHERENT DISCOURSE

The output of a phrase structure generation gram-
mar can be limited to coherent discourse under certain
conditions. If the vocabulary used is limited to that of
some source text, and if it is required that the de-

pendency relations in the output sentences not differ
from those present in the source text, then the output
sentences will be coherent and will reflect the mean-
ing of the source text. For the purpose of matching
relations between source text and output text, depend-
ency may be treated as transitive, except across prepo-
sitions other than 'of and except across verbs other
than forms of 'to be'.

A computer program which produces coherent sen-
tence paraphrases by monitoring of dependency rela-
tions has been described elsewhere.6,7 An example will
illustrate its operation. Consider the text: 'The man
rides a bicycle. The man is tall. A bicycle is a vehicle
with wheels.' Assume each word has a unique gram-
matical code assigned to it:

A dependency analysis of this text can be in the
form of a network or a list structure. In either case,
for purposes of paraphrasing, two-way dependency
links are assumed to exist between like tokens of the
same noun. (This precludes the possibility of poly-

semy.) A network description would appear as follows:

74 KLEIN

The paraphrasing program described would begin
with the selection of a sentence type.

This generation program, in contrast with the

method described above, chooses lexical items as soon
as a new slot appears; for example, the main subject
and verb of the sentence are selected now, while they
are adjacent in the sentence tree. Assume that 'wheels'
is selected as the noun for N3.

Note that 'man' is associated with the new noun phrase
node, N2.

It is now necessary to select an article dependent on
'man.' Assume 'a' is selected. While a path 'a' to 'man'
does seem to exist in the dependency analysis, it crosses
'rides,' which is a member of a verb class treated as
an intransitive link. Accordingly, 'a' is rejected. Either
token of 'the' is acceptable, however. (Note that for
simplicity of presentation no distinction among verb
classes has been made in the rules of Tables 1-4.)

It is now necessary to find a verb directly or transi-

tively dependent on 'wheels.' Inspection of either the
network or list representation of the text dependency
analysis shows no verb dependent on 'wheels.' The
computer determines this by treating the dependency
analysis as a maze in which it seeks a path between
each verb token and the word 'wheels.' Accordingly,
the computer program requires that another noun be
selected in its place; in this case, 'man'.

The program keeps track of which token of 'man' is
selected.

It is now necessary to choose a verb dependent on
'man.' Let 'rides' be chosen.

The Art0 with a zero subscript cannot be further
expanded. Let the N2 be expanded by rule 2 of Table
4.

Now the N3 may be expanded. Suppose rule 1 of Table
4 is chosen:

Let No be chosen as the next expansion of N1, by
rule 7. Now the only node that remains to be expanded

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 75

is V3. If rule 4 of Table 4 is chosen, the part of the
tree pertinent to 'rides' becomes:

A noun dependent on 'rides' must now be found.

Either token of 'man' would be rejected. If 'vehicle' is
chosen, a path does exist that traverses a transitive
verb 'is' and two tokens of 'bicycle.'

Let V0 be chosen as the rewriting of V2 by rule 8
of Table 4, and let the N3 be rewritten by rule 1 of
Table 4. The pertinent part of the tree now appears
as follows:

Assume that 'a' is chosen at the article and that N2
is rewritten as N1 + Mod1 by rules 3 of Table 4. The
result is:

The Mod1 is purely a slot marker, and no vocabulary
item is selected for it. If the Mod1 is rewritten Prep0 +
N3 by rule 5 of Table 4, 'with' would be selected as a
preposition dependent on 'vehicle,' and 'wheels' as a
noun dependent on 'with.' After the application of
rule 7, the N3 would be rewritten N0, completing the
generation as shown at the top of the next page. Or,
'The tall man rides a vehicle with wheels.'

In cases where no word with the required depend-
encies can be found, the program in some instances
deletes the pertinent portion of the tree, in others,
completely aborts the generation process. The selec-
tion of both vocabulary items and structural formulas
is done randomly.

An Essay Writing System
Several computer programs were described earlier.
One program performs a unique dependency and
phrase structure analysis of individual sentences in
written English text, the vocabulary of which has
received unique grammar codes. The power of this
program is limited to the capabilities of an extremely
small recognition grammar.

Another program generates grammatically cor-
rect sentences without control of meaning. A third
program consists of a version of the second program
coupled with a dependency monitoring system that re-
quires the output sentences to preserve the transitive
dependency relations existing in a source text. A uni-
que dependency analysis covering relations both within
and among text sentences is provided as part of the
input. The outputs of this third program are gram-
matically correct, coherent paraphrases of the input
text which, however, are random with respect to se-
quence and repetition of source text content.

76 KLEIN

What is called an “essay writing system” in this sec-

tion consists of the first and third programs just men-
tioned, plus a routine for assigning dependency rela-
tions across sentences in an input text, and a routine
which insures that the paraphrase sentences will ap-
pear in a logical sequence and will not be repetitious
with respect to the source text content. Still another
device is a routine that permits the generation of a
paraphrase around an outline supplied with a larger
body of text. In addition, several generative devices
have been added: routines for using subject and object
pronouns even though none occurs in the input text,
routines for generating relative clauses, although, again,
none may occur in the input text, and a routine for
converting source text verbs to output text forms end-
ing in '-ing.'

DEPENDENCY ANALYSIS OF AN ENTIRE DISCOURSE

After the operation of the routine that performs a
dependency and phrase structure analysis of individual
sentences, it is necessary for another program to ana-
lyze the text as a unit to assign dependency links across
sentences and to alter some dependency relations for
the sake of coherent paraphrasing. The present version
of the program assigns two-way dependency links be-
tween like tokens of the same noun. A future version
will be more restrictive and assign such links only
among tokens having either similar quantifiers, deter-

miners, or subordinate clauses, or which are deter-
mined to be equatable by special semantic rules. This
is necessary to insure that each token of the same noun
has the same referent.

While simple dependency relations are sufficient for
paraphrasing the artificially constructed texts used in
the experiments described in this paper, paraphrasing
of unrestricted English text would demand special rule
revisions with respect to the direction and uniqueness
of the dependency relation. The reason for this is
easily understood by a simple example familiar to
transformationalists.

'The cup of water is on the table.'

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 77

The parsing system would yield the same type of
analysis for each sentence. Yet it would be desirable
to be able to paraphrase the first sentence with:

'The water is on the table.'

without the possibility of paraphrasing the second sen-
tence with

'Spain is in France.'

Accordingly, a future modification of the routine
described in this section would, after noting the special
word classes involved, assign two-way dependency
links between 'cup' and 'of and also between 'of and
'water', but take no such action with words 'King', 'of',
and 'Spain' in the second sentence. This reparsing of
a parsing has significance for a theory of grammar, and
its implications with respect to stratificational and
transformational models is discussed in the concluding
section.

PARAPHRASE FORMATTING

Control over sequence and nonrepetition of the
paraphrase sentences is obtained through the selection
of an essay format. The format used in the experiments
performed consists of a set of paragraphs each of
which contains only sentences with the same main
subject. The ordering of the paragraphs is determined
by the sequence of nouns as they occur in the source
text. The ordering of sentences within each paragraph
is partially controlled by the sequence of verbs as they
occur in that text.

Before the paraphrasing is begun, two word lists
are compiled by a subroutine. The first list contains a
token of each source text noun that is not dependent
on any noun or noun token occurring before it in the
text. The tokens are arranged in source text order. The
second list consists of every token of every verb in the
text, in sequence.

The first noun on the list is automatically selected
as the main subject noun for each sentence that is to
be generated. As many generations are attempted as
there are verbs on the verb list. The main verb for
each such sentence generation attempt is taken in se-

quence from those on the list. Once a sentence is suc-
cessfully generated, the token of the verb used is de-
leted from the verb list. Nonsequential use of verbs
can occur in relative clauses or modifying phrases. In
these instances also, the verbs or verb stem tokens
used are deleted from the verb list. When every verb
on the list has been tried as the main verb for a par-
ticular main subject noun, a new paragraph is begun
and the next noun on the list becomes the main sub-
ject for each sentence. The process is continued until
the noun list is exhausted. It may happen that some
nouns do not appear as subjects of paragraphs even
though they appear on the noun list, because they do
not occur as main subjects in the source text. (This
procedure was arbitrarily selected as suitable for test-
ing the program; other formats for essay generation
can be implemented.)

The use of an outline as the basis for generating an
essay from a larger body of text is accomplished simply;
the boundary between the outline and the main body
of text that follows is marked. The noun list is limited
only to those nouns occurring in the outline. The verbs
selected still include those in the main text as well as
the ones in the outline. Theoretically, the main text
could consist of a large library; in that case the outline
might be viewed as an information retrieval request.
The output would be an essay limited to the subject
matter of the outline but drawn from a corpus in-
definitely large in both size and range of subject
matter.

GENERATION OF WORD FORMS NOT PRESENT
IN THE SOURCE TEXT

Earlier experiments indicated that in many instances
reasonable paraphrases could be performed with the
method described herein if the dependency relations
held only among stems rather than among full word
forms and if the stems were subsequently converted
to forms of the proper grammatical category. The
present system will accept a verb form with proper
dependency relations and use it in a form ending in
'-ing' when appropriate.

Relative clauses may be generated even though no
relative pronouns occur in the source text. Where the
generation process requires a relative pronoun, 'who' or
'which' is inserted into the proper slot depending on
the gender of the appropriate antecedent. All the de-
scriptors of the antecedent are then assigned to the
relative pronoun. As far as the operation of all pro-
grams is concerned, the pronoun is its antecedent. Ac-
cordingly, if a routine is to inquire whether a particular
verb is dependent on a relative pronoun, the request
is formulated in terms of the verb's dependency on the
antecedent of the relative pronoun.

The system may also generate subject and object
pronouns although such forms do not occur in the
source text. The use of subject and object pronouns is

78 KLEIN

'The King of Spain is in France.'

accomplished by separate routines. Subject pronouns
may be used randomly at a frequency that may be
controlled by input parameters. After the occurrence
of the first sentence in a paragraph, a subject pronoun
of appropriate gender and number may be used as
the main subject of subsequent sentences within the
paragraph if program generated random numbers fall
within a specified range.

The occurrence of an object pronoun of appropriate
number and gender is obligatory whenever a non-
subject noun would normally be identical with the last
nonmain subject noun used. A special storage unit
containing the last nonmain subject noun used gives
the program easy recognition of the need for a pro-
noun.

COMPUTER GENERATED ESSAYS

A number of essays were produced from varied
texts, all of which were specially constructed so as to
be suitable for parsing by a small dependency and
phrase structure grammar. The parsing recognition
grammar is contained in Table 5. (Because the mate-
rial covered forms a related whole, Table 5 and all
subsequent tables are gathered in an appendix at the
end of this document.) The generation grammar is
shown in Table 6. The recognition grammar is more
powerful than the generation grammar. The first input
text made no use of an outline; more exactly, because
the program anticipates the presence of an outline, the
entire text was its own outline. Input Text I is con-
tained in Table 7, part 1. Its essay paraphrase, Output
Text I, is contained in Table 7, part 2. Note that the
generation rules used in producing Output Text I do
not contain the rule for producing forms ending in
'-ing'. The use of this rule and the associated device
for converting verb forms ending in '-ing' is illustrated
in Output Texts III and IV, which appear in Tables
10 and 11.

Unambiguous word class assignments were part of
the input data. As an example, the first sentence of
Input Text I, Table 7, was coded:

Clever (adj.) John (noun, masc., sg.) met (verb
3rd pers. sg.).

Mary (noun, fern., sg.) in (prep.) the (art) park
(noun, neut. sg.).

Capital letters were indicated by a '+' sign pre-
ceding the first letter or word because a computer does
not normally recognize such forms. The presence of an
initial capital letter with a word coded 'noun' pro-
vided the program with information sufficient to dis-
tinguish such forms as belonging to a separate class.
Two verb classes were distinguished in the recognition
grammar, forms of 'to be' and all others; also, 'of
was treated as an intransitive dependency link. Ad
hoc word class assignments were made in the case
of 'married' in Input Text I, Table I, which was

treated as a noun, and the case of 'flamenco' in Input
Text II, Table 9, which was labeled an adjective. In
each case this was done in order to avoid a more com-
plicated generation grammar. A price was paid for
this simplification, as can be seen in the phrase 'Flam-
enco Helen' generated in Output Text II, Table 9. The
uncapitalized form of 'bentley' which appears in several
of the later paraphrases is not a typographical error,
but rather is intended to reflect the use of capitaliza-
tion to distinguish a separate word class. In order not
to assign 'bentley' to the same class as 'John' it was
left uncapitalized. (The device is not wholly ade-
quate.) The noun classes differentiated by the pres-
ence or absence of prefixed '+' were manipulated di-
rectly within the program rather than by special rules
for each class. The program prevented a form pre-
fixed by a '+' from taking an article and from being
followed by a form ending in '-ing'.

It should be noted that the spacing of the output
texts in Table 7 and beyond is edited with respect to
spacing within paragraphs. Only the spacing between
paragraphs is similar to that of the original output.

Table 8 contains an essay paraphrase generated with
the requirement that only the converse of Input Text I
dependencies be present in the output.

Discussion

There are several comments that can be made about
the essay writing program with respect both to the
functioning of the programs and to the implications for
linguistic theory suggested by the results.

PROGRAM

The compiled program occupies about 12,000 regis-
ters of Philco 2000 core storage, approximately 8,000
registers of which are devoted to tables. The JOVIAL
program contains approximately 750 statements. Be-
cause of space limitations, the largest text the system
can paraphrase is 300 English words, counting periods
as words.

One early version of the system took an hour and a
half to paraphrase 150 words of text; various attempts
were made to control this processing time. Two pro-
gramming devices used in this effort are described
below.

Because the generation process involves a search of
a network—the dependency structure of the text—the
processing time would be expected to increase expo-
nentially with text size. The main factors that control
the exponential rate of growth, besides text length, are
the amount of connectivity among words and the syn-
tactic complexity required of the sentences generated.
Text that seldom repeats tokens of nouns would yield
a nearly linear network, and the exponential increase
of processing time per word with respect to length
would not be noticeable for short texts. However, the
texts paraphrased in this paper had a fairly high fre-

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 79

quency of repetition of noun tokens. The network
representing the dependencies was made relatively
linear by having the program link a noun token only
to its immediately preceding token. Because depen-
dency is transitive, all computed results were the same
as if each token of a noun were linked to every other
token of the same noun. Because of this linking con-
vention, the dependency network was sufficiently linear
to keep the rate of increase per word linear with re-
spect to text length, at least for the examples used in
this paper.

Another device contributing to the reduction of
processing time is tree pruning. The program generates
a tree. If a subconstruction is initiated that cannot be
carried to completion, it is often deleted without aban-
donment of the remainder of the generation tree. Un-
realizable adjectives are among the units pruned. The
addition of a routine to prune modifying phrases re-
duced the processing time to approximately 10% of
the time required without the routine when the system
was set to favor text with numerous modifying phrases.

The average time for generating an essay from an
input of about 150 words is now 7 to 15 minutes, de-
pending on the syntactic complexity required of the
output. The processing time for producing a text from
a 50-word source is about 1.5 minutes. From these
figures it can be seen that the processing time per word
increases linearly with the length of the text—1.5 sec-
onds per word for a 50-word text input, about 4.5 sec-
onds a word for a 150-word text input.

THEORETICAL IMPLICATIONS

The present version of the automatic essay writing
system could not operate satisfactorily with unre-
stricted English text as input. For it to do so would
require refinement of the dependency analysis, which
was derived from immediate constituency considera-
tions. As indicated earlier, reassignment of dependency
links on the basis of the presence of numerous special
word classes would be necessary. The problem pre-
sented by the necessity for recognizing multiple pars-
ings of English sentences remains as another major
hurdle.

The present version of the system presupposes a
unique phrase structure and dependency analysis of
the source text. It can be modified to handle multiple
analyses. The paraphrasing component might refer to
a dependency analysis that was a composite of all alter-
natives (permitting paraphrases with potentially great
semantic inconsistency), or produce paraphrases cor-
responding, successively, to each possible set of analy-
ses for the sentences in a given text. It should be noted
that different phrase structure analyses of a particular
sentence can often be associated with the same depend-
ency analysis.

The current system also presupposes that every
token of a given word in a source text has the same

meaning. In some future version of the system seman-
tic ambiguity may be analysed by an additional pro-
gram which would operate on the initial phrase struc-
ture dependency analysis; it might be part of the re-
parsing of the parsing suggested in the section en-
titled “Dependency analysis of an entire discourse.”

The fact that verbs having appropriate dependency
relations in source texts were satisfactorily used as
'-ing' forms in paraphrases suggests a more general
system in which input text words belonging to a variety
of grammatical classes could be converted to new
forms in output text by the appropriate application of
what might be described as inflectional and deriva-
tional processes. In effect, such a system would as-
sume the dependency relations to exist among stems
rather than among words. The system might go a step
further and assume that the dependency relations
among stems refer to dependency relations among
semantically related classes of stems. A paraphraser
using such data might then have the capability of pro-
ducing paraphrases that differed from its inputs in lexi-
cal as well as syntactic form.

It should be emphasized that the existing system
makes no use of linguistic transformations in its opera-
tion. While a transformational grammar might be used
to produce paraphrases beyond the scope of this sys-
tem, the work of many transformations was accom-
plished within a different conceptual framework.

In preference to a transformational model of lan-
guage, a stratificational model seems better suited for
explaining the operation of the existing paraphrasing
system. If, as in Sydney Lamb's model,8,9 one posits the
existence of a sememic stratum above a lexemic one,
dependency relations may be viewed as a lexemic
counterpart of tactic relations among sememes. A de-
pendency structure defining relations among lexemic
units would have many very similar counterparts on
the sememic stratum, somewhat as a listing of allo-
morphs in a language might resemble a listing of mor-
phemes. The experiments described operated under
conditions where the dependency structure was a close
approximation to the semotactic structure which is
posited as being the proper domain for manipulating
meaning relations between one text and another. The
first dependency analysis is analogous to lexotactic
analysis. A refinement of this analysis might corre-
spond to a semotactic analysis. Conceivably, a suffi-
ciently refined system might come to resemble a dy-
namic implementation of a stratificational model.

At this point I should apologize to David Hays for
leading him to an erroneous conclusion. In a recent sur-
vey of work in dependency theory, he stated10 (p. 525):

“One line of interpretation would make dependency
a semantic theory, justifying the valences in any gram-
mar by reference to meaningful relations among ele-
ments. ... As Garvin has pointed out, translation and
paraphrase give at least indirect evidence about mean-
ing; . . .”

80 KLEIN

“As an argument favoring adoption of a dependency
model, this one is potentially interesting. It can be put
in terms of simplifying the transduction between two
strata (Lamb's lexemic and sememic). It provides a
rationale for counting co-occurrences of elements.”

If the following statement from an earlier paper is
responsible for this, I apologize7 (p. 59):

“With respect to the Stratificational Theory of Lan-
guage as propounded by Sydney Lamb, our rules of
transitive dependency permit the isolation of syntactic
synonymy. It would seem that given control over co-
occurrence of morphemes and control over syntactic
synonymy, one has control over remaining sememic
co-occurrence. This would suggest that our rules pro-

vide a decision procedure for determining the co-oc-
currence of sememes between one discourse and an-
other, without need for recourse to elaborate diction-
aries of sememes and sememic rules.”

I now feel that such a short cut between strata can
only exist in the exceptional circumstances where a
dependency analysis is a close approximation to a
semotactic analysis. While the occasional success of a
dependency model in handling meaning might tempt
one to build a semantic theory around it, I believe it
would be a more sound approach to view the success as
evidence that an unsimplified Stratificational model
would be a more powerful tool.

Received September 9, 1964

References

1. Hays, D. G., Automatic Language
Data Processing. In H. Borko
(Ed.), Computer Applications in
the Behavioral Sciences. Engle-
wood Cliffs, N. J.: Prentice-Hall,
1962.

2. Robinson, Jane, Preliminary Codes
and Rules for the Automatic Pars-
ing of English. Memorandum RM-
3339-PR, The RAND Corporation,
Santa Monica, California, 1962.

3. Hays, D. G., Grouping and De-
pendency Theories. In H. P. Ed-
mundson (Ed.), Proceedings of
the National Symposium on
Machine Translation. Englewood
Cliffs, N. J.: Prentice-Hall, 1961.

4. Gaifman, H., Dependency Systems

and Phrase Structure Systems:
Memorandum P-2315, The RAND
Corporation, Santa Monica, Cali-
fornia, 1961.

5. Yngve, V. H., A Model and an
Hypothesis for Language Struc-
ture. Proceedings of the American
Philosophical Society, 1960, 104,
444-446.

6. Klein, S., Automatic Decoding of
Written English. Ph.D. Disserta-
tion in Linguistics, University of
California, Berkeley, June 1963.

7. Klein, S., and Simmons, R. F.,
Syntactic Dependence and the
Computer Generation of Coherent
Discourse. Mechanical Transla-

tion, 1963, Vol. 7, No. 2, August
1963, pp. 50-61.

8. Lamb, S. The Sememic Approach
to Structural Semantics. In Kim-
bel A. Romney and Roy D'Andrede
(Eds.), Transcultural Studies in
Cognition. American Anthropolo-
gist, 1964, 66(3), Part 2.

9. White, J., The Methodology of
Sememic Analysis with Special
Application to the English Prep-
osition. Mechanical Translation,
Vol. 8, No. 1, August 1964, pp.
15-31.

10. Hays, D. G., Dependency Theory:
A formalism and some observa-
tions. Language, 1964, 40(4),
511-525.

Appendix
1. Adj0 + *N3 = N3
2. Adv0 + *V1 = V2
3. *N1 + SbCn1 = N2
4. *N1 + Mod1 = N2
5. *N4 + V3 = S1
6. *V2 + N4 = V3
7. *V2 + Mod1 = V3
8. *V-isl + Adj0 = V3
9. "V-is1 + N4 = V3

 10. *V-is1 + Mod1 = V3
11. Art0 + *N3 = N4
12. *Prep0 + N4 = Mod1
13. *Pn Rcn0 + N3 = SbCon1
14. *Part0 + N4 = Mod1

TABLE 5
 RECOGNITION GRAMMAR

1. Art0 + N1 = N2
2. Adj0 + N1 = N1
3. N2 + SbCon1 = N3
4. N2 + Mod1 = N4
5. N0 =N1
6. V1 + N4 = V2
7. V0 = V1
8. Parto + N3 = Mod1
9. Prep0 + N3 = Mod1

10. N4 + V4 = S1
11. PnRcn0 + V2 = SbCn1

TABLE 6
GENERATION GRAMMAR

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 81

Clever John met Mary in the park. John married Mary.
Mary loved John. Mary wanted a child. Mary had a
child. Mary raised a child. John was a successful busi-
ness man who worked for a corporation. Mary was
penniless. John secretly loved Helen who was beauti-
ful. Helen who also loved John was married to Peter.
Mary was a friend of Helen. Peter was a buddy of
John. Helen who was friendly often ate lunch with
Mary. John played golf with Peter. John wanted Helen.
Helen wanted John. Divorce was impossible. The solu-
tion was simple. John liked Mary. Helen liked Peter.
John killed Peter. Helen killed Mary. The end was
happy.

TABLE 7, PART 1
INPUT TEXT I

John who married penniless Mary met her. Clever John
was a business man. He loved friendly Helen. He
played golf. He wanted Helen. John who killed a
buddy liked penniless Mary.
Mary in the park who wanted a child loved clever
John. She had a child. She raised it. She was a friend
of friendly beautiful Helen.
Beautiful Helen loved successful John. Beautiful Helen
was married. Helen who wanted John ate lunch. She
liked a buddy. She killed Mary.
Peter was a buddy.

TABLE 7, PART 2
OUTPUT TEXT I

John loved Mary. John loved Helen. He wanted her.
Mary who married John met him. Mary who killed
Helen liked John.
Child wanted Mary. It had her. It raised her.
Helen loved John. She wanted him.
Peter who killed him liked Helen.
Lunch ate her.
Golf played John of Peter.

TABLE 8
PARAPHRASE OF INPUT TEXT I USING

CONVERSE OF DEPENDENCIES

(Outline)
Clever John met Mary in the park. John married Mary.
Mary loved John. Mary wanted a child. Mary had a
child. Mary raised a child. John was a successful busi-
ness man who worked for a corporation. Mary was
penniless. John secretly loved Helen who was beautiful.
Helen who also loved John was married to Peter. Mary
was a friend of Helen. Peter was a buddy of John.
Helen who was friendly often ate lunch with Mary.
John played golf with Peter. John wanted Helen. Helen
wanted John. Divorce was impossible. The solution was
simple, John liked Mary. Helen liked Peter. John killed
Peter. Helen killed Mary. The end was happy.

(Main Text)
A businessman is a man who likes money. John was a
gangster. Peter was a bullfighter. Mary was a countess.
Helen was a flamenco dancer. Lunch is a midday meal.
A gangster commits crimes. A bullfighter fights bulls.
Bulls are dangerous animals. The gangster drives a
bentley. The flamenco dancer has many admirers. The
countess owns a castle.

TABLE 9, PART 1
INPUT TEXT II

John who married penniless Mary met her. Clever John
who commits crimes was a businessman. Clever John
who drives a bentley loved a flamenco dancer. John
played golf. He wanted Helen. Clever John who killed
Peter liked Mary. John who likes money is a man.
Clever John was a gangster.
Mary loved a successful businessman. Mary who was a
countess wanted a child. Penniless Mary had it. Penni-
less Mary raised it. She was a friend. Mary in the park
owns a castle.
Flamenco Helen loved clever John. She was married.
She ate lunch with Mary. Helen wanted John. She
liked Peter. Helen killed a countess. Helen who has
many admirers was a dancer.
Peter who fights bulls was a buddy of John. He was
a bullfighter.

TABLE 9, PART 2
OUTPUT TEXT II

(Outline)
The hero is Peter. The unfaithful husband is John who
commits murder.

(Main text)
John was a gangster. The gangster drives a bentley. A
gangster commits crimes. John was a successful busi-
nessman who works for a corporation. Bulls are dan-
gerous animals. Peter was a bullfighter. A bullfighter
fights bulls.

TABLE 10, PART 1
INPUT TEXT III

82 KLEIN

A hero fighting bulls is Peter. He was a bullfighter.
The husband committing murder is successful John
who was a gangster driving a bentley. A husband com-
mits crimes. The successful unfaithful husband is a
successful businessman.

TABLE 10, PART 2
OUTPUT TEXT III

WITH CONVERSION OF SOURCE TEXT VERBS
TO FORMS IN '-ING'

(Outline)
The hero is Peter. The homewrecker is Helen. The un-
faithful husband is John who commits murder. The
poor housewife is Mary.

(Main text)
John is a successful businessman who works for a
corporation. A businessman is a man who likes money.
John was a gangster. Peter was a bullfighter. Mary was
a countess. Helen was a dancer. A gangster commits
crimes. A bullfighter fights bulls. Bulls are dangerous
animals. The gangster drives a bentley. The dancer has
many admirers. The dancer wears a hat. The countess
owns a castle. John secretly loved Helen who was
beautiful. Helen who also loved John was married to
Peter. John wanted Helen. Helen wanted John. Di-
vorce was impossible. The solution was simple. John
killed Peter. Helen killed Mary. The end was happy.

TABLE 11, PART 1
INPUT TEXT IV

A hero fighting bulls is Peter. He was a bullfighter.
The beautiful homewrecker who wanted a gangster
who commits crimes is Helen. The homewrecker was a
dancer who has many admirers. She wears a hat. She
loved successful John who loved the dancer. A beauti-
ful homewrecker was married. She killed Mary who
owns a castle.
An unfaithful husband liking money is the gangster
driving a bentley. He commits murder. The unfaithful
husband working is a successful businessman. He is
a man. The husband was a gangster. The unfaithful
husband wanted Helen. The husband killed Peter.

TABLE 11, PART 2
OUTPUT TEXT IV

WITH CONVERSION OF VERBS TO FORMS ENDING IN '-ING'

AUTOMATIC PARAPHRASING IN ESSAY FORMAT 83

