
[Mechanical Translation and Computational Linguistics, vol.8, nos.3 and 4, June and October 1965]

Machine Methods for Proving Logical
Arguments Expressed in English*

by Jared L. Darlington, Research Laboratory of Electronics, Massachusetts Institute of
Technology

This paper describes a COMIT program that proves the validity of logical
arguments expressed in a restricted form of ordinary English. Some
special features include its ability to translate an input argument into
logical notation in four progressively refined ways, of which the first
pertains to propositional logic and the last three to first-order functional
logic; and its ability in many cases to select the "correct" logical trans-
lation of an argument, i.e., the translation that yields the simplest proof.
The logical evaluation part of the program uses a proof procedure al-
gorithm that is an amalgam of the "one-literal clause rule" of Davis-
Putnam and the "matching algorithm" of Guard. It is particularly effi-
cient in proving theorems whose matrices in conjunctive normal form
contain one or more one-literal clauses (atomic wffs), but it will also
prove theorems whose matrices contain only polyliteral clauses. The
program has been run on the I.B.M. 7094 computers at M.I.T. and
utilizes the time-sharing facilities provided by Project MAC and the
Computation Center.

Introduction
A considerable amount of work has recently been
done in the general area of automatic translation of
ordinary language into the terminology of symbolic
logic. We shall not attempt here to give a general de-
scription of this work, since it has already been sum-
marized and discussed in some detail by R. F. Simmons
in section 7 of his excellent report, “Answering English
Questions by Computer: a Survey”1. Suffice it to say
that no one has essayed the construction of a general
logic translation program that would, taking account
of all the amphibolies and polysemies of natural lan-
guage, unambiguously parse any English sentence and
translate it into the notation of symbolic logic. The
syntactic and semantic problems involved are just as
difficult, if not more so, than those of translating be-
tween natural languages. The existing logic transla-
tion schemes are based, therefore, on systems of re-
stricted English, with limited grammars and vocabu-
laries. They are, for all that, at least potentially quite
useful for posing questions and submitting problems
to computers in ordinary language, so long as the re-
strictions of the input language are simple and clear
enough to be easily grasped by the user, and so long
as provision is made for the user to correct his mis-
takes and rephrase his problem if he doesn't get it
right the first time. In this connection, the time-shar-
ing systems that are being installed in several compu-
tation centers are particularly useful, in that they per-
mit the programming of error-detection devices that
* This work was supported in part by the Joint Services Electronics
Program under contract DA36-039-AMC-03200(E); and in part by
the National Science Foundation (Grant GN-244). An abbreviated ver-
sion of the paper was read at the IFIP Congress 65 in New York
City in May, 1965.

immediately reject ungrammatical sequences, mis-
spelled words, etc., and allow the user sitting at a con-
sole to retype the problem in whole or in part.

The logic translation program developed by the
present author differs from some of the others in plac-
ing primary emphasis on the evaluation of arguments,
a traditional concern of the logician since the ad-
vent of the Aristotelian theory of the syllogism. An
argument may be defined semantically as a group of
propositions organized into premisses and conclusion,
where the propositions that constitute the premisses
provide evidence for the truth of the conclusion. Or an
argument may be defined syntactically as a string of
permissible sentences that are divided into premisses
and conclusion by a syntactic marker, such as a word
like 'therefore' or 'since'. Our program, for example,
requires one of the sentences of the string to begin
with 'therefore', and takes the sentence or sentences to
the left of 'therefore' to be the premisses and those to
the right to be the conclusion. This syntactic definition
of 'argument' itself constitutes one of the restrictions
of our input language, since there are many arguments
that occur in ordinary language in which the order of
premisses and conclusion is inverted, as in arguments
of the form

p because q

or in which the relation between premisses and con-
clusion is not explicitly denoted by any connective
words but is simply understood, as in

X is not expected to accompany the team on the
next road trip. His ankle injury will probably keep
him out of action for several more weeks.

 41

in which the second sentence states the evidence for
the expectation expressed by the first sentence. This
argument lies outside the scope of our program for an-
other reason: its evaluation requires the techniques of
inductive rather than deductive logic. Our program
will prove arguments only if they are deductively valid,
in the sense that to assume the premisses true and the
conclusion false would be self-contradictory. A deduc-
tively invalid argument may of course be inductively
valid, if the premisses provide good evidence for the
conclusion, but we have not attempted to include a
set of rules for testing the inductive validity of argu-
ments, though the program could be adapted for this
purpose.

Directly related to this emphasis on the evaluation
of arguments is another difference between our pro-
gram and the others, namely, the fact that our program
must distinguish several "levels of analysis" or ways
of translating the sentences of an input argument. A
propositional logic analysis is entirely adequate to
prove an argument like

If Henry is a member of the Socialist Party (SP),
then Henry is not a member of the Progressive
Party (PP). Henry is a member of the PP. Therefore
Henry is not a member of the SP.

which may be symbolized in propositional logic as

p implies not-q, q, therefore not-p

but it will not suffice for an argument like

All circles are figures. Therefore all who draw circles
draw figures.2

which may be symbolized in first-order functional logic
as

(Ax) (Cx implies Fx). Therefore (Ay) ((Ez) (Cz
& Dyz) implies (Ew) (Fw & Dyw)).

To symbolize this argument in terms of propositional
logic would yield

p, therefore q
which is clearly invalid. Our program, in fact, is cap-
able of providing up to four progressively refined
logical translations for an input argument. The first of
these translations, “Analysis I,” pertains to propositional
logic, and the last three, “Analyses II, III and IV,” to
first-order functional logic. In Analysis I, each sentence
or sentential clause is replaced by a single propositional
letter, while in Analyses II, III, and IV, the sentences
and sentential clauses are symbolized in terms of quan-
tifiers, variables, individual constants, and unary,
binary, and ternary predicates. In Analysis II, all nouns,
adjectives, relative clauses, and prepositional phrases
are symbolized as unary predicates and are replaced
by terms of the form “P/.n,” where 'n' denotes a nu-
merical subscript of less than 500. Analysis III differs
from II in employing binary and ternary predicates,

i.e., two- and three-term relations, in addition to unary
predicates. Transitive verbs, prepositions, and phrases
like 'is greater than' and 'is a member of are treated
as binary relations and are replaced by terms of the
form “P/.n,” where 'n' denotes a numerical subscript
equal to or greater than 500, and verbs like 'gives' are
treated as ternary relations if they are accompanied by
an indirect object, while nouns and adjectives continue
to be symbolized as unary predicates as in II. Analysis
IV differs from II and III solely in its treatment of
phrases like 'the king of France', i.e., definite descrip-
tions. Analyses II and III regard such phrases as proper
names and replace them by individual constants, i.e.,
terms of the form “IND/.n,” while IV analyses them as
asserting the unique existence of the subject referred
to. Each of these four translations thus embodies more
of the meaning of the input sentences than its prede-
cessors, but in logical analysis the aim is not to ex-
press as much of the meaning as possible, as in trans-
lation between natural languages, but rather to dis-
cover how much of the meaning it is necessary to con-
sider in order to prove the argument valid.

The fact that an argument may be logically sym-
bolized in several different ways raises the question of
which analysis should be selected to provide the input
for the logical evaluation part of the program. Rather
than starting the logical computation with the simplest
analysis or the most detailed analysis, the program
employs a criterion, based on the amount of repetition
between the premises and conclusion, to decide which
of the four analyses is likeliest to yield the simplest
proof. This decision, however, is not final: if it ap-
pears that the argument as symbolized cannot be
proven, the operator may interrupt the logical com-
putation and direct the program to try proving a for-
mula resulting from another analysis of the argument.
This type of operator intervention is easily accom-
plished in the M.I.T. time-sharing system, into which
the program has been incorporated.

In addition to permitting a considerable amount of
operator control over the course of a running program,
the use of time-sharing has, as we have discovered,
several further advantages over batch processing. For
example, it is quicker and easier using time-sharing to
check out and debug new routines, take dumps, etc.,
and it is simpler to save and resume compiled pro-
grams. Time-sharing has one minor disadvantage inso-
far as our own program is concerned, which is that our
program has grown too large for the COMIT time-shar-
ing system to compile. We have therefore split up the
program into three convenient sections, called “DA
COMIT,” “DB COMIT,” and “DC COMIT,” and designed to
run consecutively. The three sections of the program
have all been compiled and saved (and named “DA
SAVED,” “DB SAVED,” and “DC SAVED,” respectively), so
one section may be resumed as soon as the previous
section is finished, and the effect is that of running a
single program; we shall therefore continue to speak

42 DARLINGTON

of DA, DB, and DC as constituting one program. The
three sections do correspond quite closely to natural
divisions of the program, since DA does the look-up
and parsing of the input sentences, DB does the logical
translation of the parsed sentences, and DC does the
logical evaluation of the resulting formulae. The divi-
sion between DA, DB, and DC corresponds, up to a point,
to Yngve's3 conception of mechanical translation as
requiring three principal stages, i.e., analysis of the
input sentences, conversion of the structures of the
input sentences into corresponding structures of the
output language, and synthesis of the output sentences.
Roughly speaking, DA and DB correspond to the first
two of Yngve's three stages, but DC does not corre-
spond to his third stage. Our program does not have to
synthesize the output sentences, since validity is a
matter of logical form or structure rather than content,
and the evaluation routine DC operates solely on the
logical forms of the sentences. We shall be discussing
these three sections of the program in greater detail in
the remainder of the paper.

Please note our use of quotation marks: throughout
the paper we follow the convention for the use of
single quotes (inverted commas) that is explained in
W. V. Quine's Mathematical Logic4, according to which
a word, phrase, or sentence that is “mentioned” (as
opposed to “used”) is enclosed within single quotes,
and the quotation is regarded as naming the entity
within the quotes. For this reason, it is necessary to
place any punctuation marks that are not actually part
of the sequence named outside the single quotes, lest
the punctuation marks be construed as part of the
name of an entity. This convention accords with the
current usage of many logicians, though it conflicts
with the more journalistic policy of placing quotation
marks outside commas and periods regardless of logic.
We do, however, follow current journalistic procedure
in placing double quotes, and single quotes that de-
limit quotations within quotations, outside commas and
periods; and we occasionally omit quotes altogether
where no ambiguity is likely to result.

Initial Stages of the Program—Lookup and Parsing
The operator at the time-sharing console starts the
program by typing 'RESUME DA', or simply 'R DA'. He
then proceeds to type in an argument. After the last
sentence, he types 'DONE', which signals to the pro-
gram that the input is finished. The program then pro-
ceeds to look up each word and punctuation mark of
the argument in a dictionary, or "list rule," whose func-
tion is to supply subscripts specifying the syntactic
class or classes to which a word may belong. There are
nine principal syntactic classes, denoted by the literal
subscripts

ADJN, CONJ, DET, NOT, P, PREP, PRNAME, RELPR, and
VPOS.

The category ADJN comprises both adjectives and

nouns, which may be lumped together since the logic
translation routine regards both adjectives and nouns
as unary predicates. An incidental advantage of this
procedure is that it avoids parsing problems stemming
from the fact that nouns frequently occur in adjectival
positions, as in 'birthday present' (though it does not
avoid the problem that many such expressions are
idiomatic), or from the fact that adjectives frequently
occur in nominal positions, as in 'none but the brave
deserve the fair'. The category CONJ comprises the con-
junctive words

and, iff (if and only if), implies, nor, or, and then.

('But' is regarded as a variant of 'and', and is changed
to 'and' during the lookup.) The category DET com-
prises the five determiners

all, some, no, only, and the.

('Each' and 'every' are changed to 'all', and 'a' and 'an'
are changed to 'some'.) The category NOT includes
negative particles, of which 'not' is the only one em-
ployed at present. The category P comprises punctua-
tive words, whose primary function is to separate
sentences or sentential clauses. In addition to the con-
junctive words, and the period and comma, the cate-
gory P includes

both, either, if, neither, that (in the context 'implies
that'), and therefore.

The remaining categories are as follows: PREP in-
cludes the prepositions, PRNAME includes the proper
names, RELPR includes the relative pronouns, and VPOS
includes both transitive and intransitive verbs. In ad-
dition to the nine primary syntactic categories, there
are three secondary categories, so called because they
figure only in a routine, directly following the diction-
ary lookup, that performs some verbal rearrangements
and simplifications, and they are eliminated before the
program enters the parsing routine. Of these three
secondary categories, COMP denotes comparative par-
ticles like 'as', 'than', 'more', and 'less'; COMPADJ in-
cludes comparative forms of adjectives; and VAUX in-
cludes auxiliary verbs, like 'will', 'have', and 'do'.
The vocabulary that the program employs is chosen
mainly from the examples that are submitted to the
program. It is, however, unnecessary to recompile the
program every time it is desired to submit an argu-
ment with new vocabulary, since words that are not
found in the program's dictionary may be typed di-
rectly into the workspace from the console, along with
their appropriate subscripts. A word thus typed in goes
onto a supplementary shelf, where it may be found if
it recurs in the argument. This supplementary diction-
ary does not become a permanent addition to the
dictionary of the compiled program, so if it is planned
to use the new vocabulary at all frequently, it is bet-
ter to recompile the program with the new words
added to the list rule. The dictionary has been sim-

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 43

plified by listing only the singular forms of regular
nouns and the infinitives of regular verbs, so if a word
is not found in the dictionary the program (employing
a variant of the method of “longest match”) reduces
it to a singular noun or a verbal infinitive, if possible,
and looks it up again. Nouns remain in the singular,
since the determiner of a noun provides the transla-
tion routine with enough information about number
(logically speaking, 'all man' is just as good as 'all
men'), and verbs remain in the present infinitive,
thereby facilitating the reduction of certain verbal
forms to others, as will be explained later on, when
we discuss propositional logic translation. The diction-
ary lookup and syntactic subscripting procedures are
summarized in the following outline.

OUTLINE OF THE DICTIONARY LOOKUP AND SYNTACTIC
SUBSCRIPTING ROUTINE

Input shelf is Shelf 9, output shelf is Shelf 2, supple-
mentary dictionary is Shelf 100.

1. Start. Read in next word, W, from input shelf.
1.1. Succeed: go to 2.
1.2. Fail: DONE.

2. Look up W in list.
2.1. Succeed: put appropriate subscripts (/ADJN,
/DET, /CONJ, etc.) on W; queue W onto output shelf;
go to 1.
2.2. Fail: look up W in supplementary dictionary.

Succeed: go to 2.1.
Fail: does W end in 'ies' or 'ied'?
 Yes: change 'ies' ('ied') to 'y'; go to 2.
 No: does W end in ‘s’?
 Yes: go to 3.
 No: does W end in 'd'?
 Yes: go to 3.
 No: does W end in ‘e’?

Yes: if W results from deletion of final 'd' or
's', go to 3. If not, go to 4.
No: does W end in a double consonant?
 Yes: if W results from deletion of final 'ed',
 go to 3. If not, go to 4.
 No: go to 4.

3. Delete final letter of W; go to 2.

4. Ask operator, “What part of speech is W?” Opera-
tor responds by typing in an item of the form

—/SUB +
where 'SUB' denotes one of the nine principal syntactic
categories ADJN, DET, etc. (The plus sign has no signifi-
cance other than the fact that the COMIT “format s
input,” which allows input items to be subscripted, re-
quires that each input item be followed by the punc-
tuation mark ‘+’.) The program then creates the item

W/SUB
and adds it to the supplementary dictionary. In some
cases the operator must retype W; e.g., if W is ‘sold’,

an irregular past tense verbal form, the operator types
SELL/VPOS+

in order to reduce it to the present infinitive. The
program does this automatically for past tenses of
regular verbs.

When 4 is finished, go to 1.

After all the words and punctuation marks of the
input sentences have been subscripted, the program
performs a series of verbal rearrangements and sim-
plifications which, for want of a better word, we may
call “transformations.” These transformations are es-
sentially of six types, and are performed in the follow-
ing order.

(1) Structures of the form

$1/COMP + $1/ADJN + $1/COMP

and
$1/COMPADJ + $1/COMP

e.g.,
AS/COMP + GREAT/ADJN + AS/COMP, MORE/COMP +
TALL/ADJN + THAN/COMP, GREATER/COMPADJ + THAN/
COMP,

are compressed into one word and are given the sub-
script /COMPADJ, thereby becoming

ASGREATAS/COMPADJ, MORETALLTHAN/COMPADJ,
GREATERTHAN/COMPADJ,

etc. (The '$1' symbol in COMIT denotes any single
constituent.)

(2) The verbal auxiliaries WILL/VAUX, HAVE/VAUX,
DO/VAUX, etc., are eliminated, and any negative parti-
cles are placed after their verbs. For example,

WILL/VAUX + COME/VPOS, HAVE/VAUX + COME/VPOS,
DO/VAUX + COME/VPOS,

etc., are reduced to COME/VPOS, and
WILL/VAUX + NOT/NOT + COME/VPOS, HAVE/VAUX
+ NOT/NOT + COME/VPOS, DO/VAUX + NOT/NOT +
COME/VPOS,

etc.. are reduced to COME/VPOS + NOT/NOT. Any
verbal auxiliary that is not accompanied by a main
verb is itself taken as a main verb, and has its sub-
script /VAUX replaced by /VPOS.

(3) Structures of the form

IS/VPOS + $1/COMPADJ

and

IS/VPOS + NOT/NOT + $1/COMPADJ

delete the IS/VPOS and change the subscript/COMPADJ
to /VPOS. For example,

44 DARLINGTON

IS/VPOS + GREATERTHAN/COMPADJ, AND IS/VPOS + NOT/
NOT + ASGREATAS/COMPADJ

are converted into

GREATERTHAN/VPOS, and ASGREATAS/VPOS + NOT/NOT.

(4) Structures of the form

$1/VPOS + $1/COMPADJ, AND $1/VPOS + NOT/NOT + $1/
COMPADJ

have the $1/VPOS and the $1/COMPADJ compressed into
one word, which is subscripted with /VPOS. For exam-
ple,

RUN/VPOS + ASFASTAS/COMPADJ, AND SEE/VPOS + NOT/
NOT + FARTHERTHAN/COMPADJ,

are converted into
RUNASFASTAS/VPOS, AND SEEFARTHERTHAN/VPOS + NOT/
NOT.

(5) Structures of the form

$1/VPOS + $1/PREP,

and

$1/VPOS + NOT/NOT + $1/PREP

have the $l/VPOS and the $1/PREP temporarily com-
pressed and looked up in a special dictionary to see
whether they can form a single relation. If so, they
remain compressed, and are subscripted with /VPOS.
For example,

STOP/VPOS + IN/PREP

and

GET/VPOS + NOT/NOT + TO/PREP

become

STOPIN/VPOS

and

GETTO/VPOS + NOT/NOT,

while

OWN/VPOS + TO/PREP

remains uncompressed.

(6) Finally, the dummy word

ONE/ADJN

is inserted in a couple of special cases, in order to
facilitate the subsequent parsing. For example,

THERE + IS/VPOS

becomes

SOME/DET + ONE/ADJN + IS/VPOS,

and any determiner not directly followed by a $1/ADJN
is provided with ONE/ADJN. For example,

ALL/DET + WHO/RELPR + DRAW/ADJN, VPOS +
CIRCLE/ADJN, VPOS

becomes

ALL/DET + ONE/ADJN + WHO/RELPR +
DRAW/ADJN, VPOS + CIRCLE/ADJN, VPOS.

As a result of the dictionary lookup and preliminary
transformations, each item of the input text should be
subscripted with one or more of the subscripts denot-
ing the nine principal syntactic categories. Any sec-
ondary subscripts should have disappeared by this
time, but if any remain, they will cause the program
to stop with an appropriate error comment. The next
step is to parse the input sentences according to the
following grammar, which is presented in the exact
form in which it appears in the program, i.e., as a list
rule, or dictionary of symbols. The COMIT notation,
which the program employs, is explained in greater
detail in An Introduction to COMIT Programming5 and
COMIT Programmers' Reference Manual6. A good in-
formal presentation is “A Programming Language for
Mechanical Translation”7, by V. H. Yngve.

GRAMMAR OF THE PROGRAM, IN THE FORM OF A COMIT
LIST RULE
−P05 S = NP +V + OR + NP + VP*0 + OR + NP + VP*1+ *(+ –/DET–

+–/ADJN+–/PRNAME *
SNOVP = NP + *(+ –/DET+ –/ADJN+ –/PRNAME *
SNONP = V + OR + VP*0 + OR + VP*L + *(+ –/VPOS *
NP= – /PRNAME + OR + NP*0 + OR + NP*1 + *(+ –/DET–

+–/ADJN+–/PRNAME *
NP*0=ADJNCL + OR + NP*2 + *(+–/ADJN *
NP*L=–/DET + NP*0+*(+–/DET *
NP*2 = ADJNCL + RELCL + OR + ADJNCL + PPCL–

 + *(+– /ADJN *
ADJNCL= –/ADJN + OR + ACL*0 + OR + ACL*L–

+ *(+–/ADJN *
ACL*0 = – /ADJN + ADJNCL + *(+–/ADJN *
ACL*L=–/ADJN + ACL*2 + *(+–/ADJN *
ACL*2 = – /CONJ + ADJNCL + *(+ – /CONJ *
VP*0 = V + NP + *(+ –/VPOS *
VP*L=VP*0 + PPCL+*(+–/VPOS *
V = – /VPOS + OR + VNEG + *(+– /VPOS *
VNEG = – /VPOS + – /NOT + *(+ – /VPOS *
IVP=NP + V+*(+ –/DET + –/ADJN+ –/PRNAME *
RELCL = RCL*1 + OR + RCL*2+*(+–/RELPR *
PPCL=PPCL*L + OR + PPCL*2 + *(+ –/PREP *
RCL*L = RCL*2 + RCL*3 + *(+–/RELPR *
PPCL*L =PPCL*2 + PPCL*3 + *(+ –/PREP *
RCL*2 = –/RELPR + V + OR + – /RELPR + VP*0 + OR–
 + –/RELPR + VP*1 + OR + – /RELPR + IVP–
 + *(+– /RELPR *
PPCL*2 =– /PREP + NP+*(+ –/PREP *
RCL*3 =– /CONJ + RELCL + *(+ –/CONJ *
PPCL*3 = – /CONJ + RELCL + *(+ – /CONJ *

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 45

The left half of each list subrule of P05 is a symbol
of the grammar, and the right half of each rule gives
all the ways of rewriting the symbol in the left half.
If there are more than one expansion for a symbol,
they are separated by OR. At the end of each rule is a
* (followed by one or more terms of the form —/SUB.
These items denote all the possible initial words of
the possible expansions. Thus, the symbol SNONP may
be rewritten as V or VP*0 or VP*l, but any clause of
these three types must begin with a lexical item of
the form $1/VPOS. This information is included in the
right half of each rule because it enables the parsing
routine to be written more efficiently than otherwise—
if a sentence is being parsed and the next lexical item
to be accounted for is an ADJN, then the next struc-
ture could not possibly be a V, VP*0, or VP*l, or, for
all that, an SNONP. The asterisk at the far right of each
list subrule is the go-to; in COMIT, if a rule or subrule
bearing the asterisk go-to is successfully executed, then
control passes to the next rule (not subrule) in se-
quence.

The parsing program will parse complete sentences
(denoted by S), “sentences” lacking a main verb
phrase (denoted by SNOVP), and “sentences” lacking a
main noun phrase (denoted by SNONP). All three types
are illustrated by the compound sentence

Jack and Jill goup the hill and godown the hill.
(Jack and Jill go up the hill and go down the hill.)

whose parsing will treat 'Jack' as an SNOVP, 'Jill goup
the hill' as an S, and 'godown the hill' as an SNONP. A
routine directly following the parsing expands SNOVP's
into S's, by borrowing the main verb phrases from the
immediately following S's and SNONP's, and expands
SNONP's into S's, by borrowing the main noun phrases
from the immediately preceding S's and SNOVP's. The
sample sentence will then be expanded into

Jack goup the hill and Jack godown the hill and
Jill goup the hill and Jill godown the hill.

In addition to parsing S's, SNOVP's and SNONP's, the
parsing routine has the task of determining the
beginnings and ends of these structures. It assumes
that a sentence or sentential clause begins with the
first non-P word (i.e., the first word not bearing the
subscript /P) that it encounters, and it stops with the
longest sentence or sentential clause directly followed
by a P-word that it can find.

The parsing routine is a straightforward program
that attempts to generate all the sentences of the gram-
mar from left to right by successively applying the
phrase structure rules to the expansion of symbols,
thereby generating successive word-class symbols that
are matched against the words of the input sentence.
If a word-class symbol matches the corresponding
word in the input sentence, the sentence is provisionally
accepted, but if they do not match, the analysis is
rejected. The proposed parsings, or partial analyses,

of the input sentence are stored in pushdown form on
Shelf 1. Each analysis is of the form

.........+ *Q/.n + X +...................+ **

in which the part of the formula to the left of the
marker *Q has already been found to be compatible
with the sentence being parsed, the numerical sub-
script /.n on *Q is the number of words taken account
of so far increased by 1, X is the next symbol to be
tested, the part of the formula between X and ** is
the proposed parsing for the rest of the sentence, and
the marker ** denotes the end of the analysis and
separates it from the other analyses on the same shelf.
An analysis is read in from Shelf 1, and the symbol x
directly to the right of *Q is tested. If X is a word-class
symbol, it will be of the form —/SUB, where SUB may
be an ADJN, DET, etc., and the next word (nth word)
of the sentence is looked at to see whether it has the
subscript /SUB. If it does, then the analysis is con-
firmed, any subscripts other than SUB on the word are
deleted, the marker *Q is moved to the right of the
next symbol, the numerical subscript /.n on *Q is in-
creased by 1, and the analysis is stored at the front
of Shelf 1. If, however, the word does not have the
subscript —/SUB, then the analysis is invalidated. If
the symbol X directly to the right of *Q is not of the
form —/SUB, then it is looked up in the list P05 to
determine its possible expansions, a new analysis is
created for each expansion, the marker *Q is moved to
the right of the symbol expanded, and the new anal-
yses are stored at the front of Shelf 1. This procedure
is described in greater detail in the following outline.

OUTLINE OF THE PARSING ROUTINE

Shelf 9 is input shelf, Shelf 6 is output shelf, Shelf 1
is for the partial parsings, Shelf 8 is for the complete
parsings, Shelf 4 is for all the expansions of a given
symbol X under analysis, and Shelves 2, 3, and 5 are
for temporary storage of parts of the formula under
analysis.

1. Start. Has first item of Shelf 9 a /P subscript?
1.1. Yes: delete any numerical subscript; queue item

onto Shelf 6; go to 1.
1.2. No: is Shelf 9 empty?

1.21. Yes: DONE.
1.22. No: subscript first item of Shelf 9 with /.1,

second item with /.2, etc.; initialize Shelf 1
With *Q/.1 + SNONP + ** + *Q/.1 + SNOVP +
** + *Q/.1 + S + **; go to 2.

2. Read in from Shelf 1 up to and including first **.
2.1. Succeed: locate item of Shelf 9 with same

numerical subscript as *Q in workspace; make a
copy of this item, and place it at front of Shelf 9;
queue everything up to but not including *Q onto
Shelf 3; go to 3.

2.2. Fail: go to 8.

46 DARLINGTON

3. Is *Q directly followed by an item of the form
—/SUB?

3.1. Yes: move *Q to right of —/SUB; insert first item
on Shelf 9 between them. This results in a se-
quence of the form

—/SUB + W/SUB2 + *Q/.n
Go to 4.

3.2. No: *Q is directly followed by a symbol, say X.
Move *Q to right of X; queue X + *Q onto Shelf
3, leaving copy of X in workspace; store remainder
of formula temporarily on Shelf 2; go to 6.

4. Is — /SUB1 equal to, or a part of, SUB2?
4.1. Yes: formula is a possible parsing; go to 5.
4.2. No: delete workspace and Shelf 3; go to 2.
•5. Is *Q directly followed by **?
•5.1. Yes: formula is a complete parsing. Delete *Q;

queue formula in workspace onto Shelf 3; trans-
fer parsed sentence from Shelf 3 to Shelf 8; go
to 2.

5.2. No: formula is a partial parsing. Queue work-
space onto Shelf 3; transfer formula from Shelf 3
to front of Shelf 1; go to 2.

6. Look up X in list P05; store part of formula up to
but not including * ((i.e., the possible expan-
sions of X) on Shelf 4; delete *(. The items
—/SUB remaining in the workspace denote possi-
ble initial words of structures on Shelf 4. Read
in next item, W, from Shelf 9. Do any of the items
—/SUB in the workspace have the same literal
subscript as W?

6.1. Yes: parsing is legitimate so far; go to 7.
6.2. No: parsing is illegitimate; clear workspace, and

Shelves 2, 3, and 4; go to 2.

7. Read in next expansion of X from Shelf 4.
7.1. Succeed: store expansion on Shelf 5; assemble

partial parsing as follows: copy of Shelf 3 + Shelf
5 + copy of Shelf 2; shelve resulting formula
onto front of Shelf 1; go to 7.

7.2 Fail: clear Shelves 2 and 3; go to 2.

8. Find last word, w, in workspace that occurs before
a $1/P; record the numerical subscript /.n of W;
erase formula in workspace up to and including
w; shelve everything after w onto front of Shelf 9;
determine which parsing(s) on Shelf 8 take ac-
count of exactly n words, and discard the others.
Are there any parsings left?

8.1. Yes: go to 9.
8.2. No: stop with error comment.

9. Is there exactly one parsing?
9.1. Yes: go to 10.
9.2. No: give each parsing a number, and ask operator

which one he wants. Operator responds by typing
–/.n+

where n is the number of the desired parsing. Go
to 9.1.

10. Check formula for wellformedness, using SCOPE
routine (described below). Is formula well-
formed?

10.1. Yes: queue formula, followed by *), onto Shelf
6; go to 2.

10.2. No: stop with error comment.

A typical sentence that the program has parsed is

All who support Ickes will vote for Jones.

which is a paraphrase of 'Whoever supports Ickes will
vote for Jones', the first sentence of an example from
I.M. Copi’s Symbolic Logic8. The parsing is given be-
low.

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL +
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0 +
V + SUPPORT/VPOS + NP + ICKES/PRNAME + VP*0 + V
+ VOTEFOR/VPOS + NP + JONES/PRNAME + *) + ./P

The SCOPE routine that the program employs serves
the primary purpose of determining the extent of a
formula or section of a formula, and the secondary pur-
pose of testing the wellformedness of a formula. Di-
rectly following the parsing routine, each symbol of the
parsed formula is given a numerical subscript through
a list lookup (any old numerical subscripts are auto-
matically deleted), as follows: each symbol that is ex-
panded into two symbols is given the numerical sub-
script /.1 (these include S, NP*1, NP*2, ACL*0, ACL*1,
ACL*2, VP*0, VP*1, VNEG, IVP, RCL*1, PPCL*1, RCL*2,
PPCL*2, RCL*3, PPCL*3); and each symbol that is re-
written as one symbol is given the subscript /.0 (these
include SNOVP, SNONP, NP, NP*0, ADJNCL, V, RELCL,
PPCL). The remaining symbols are all lexical items,
and are given the subscript /.32767 (equal to minus
one, mod 215). The SCOPE routine determines the scope
of a symbol X by putting the marker —/.1 immediately
to the left of X, and then reading from left to right.
Each item W encountered in the left-to-right search
raises the subscript on the marker by the numerical
subscript on W. The search ends when the count goes
to zero. The essence of the SCOPE routine is the one-
rule loop

SCOPE $0 + $l/.G0 + $1 = 2/.l.*3 + 3 //*Q7 2 SCOPE

The $0 finds the left end of the workspace; the $l/.G0
finds the marker, so long as its subscript is greater than
zero; and the $1 finds the item directly to the right of
the marker. The loop can terminate in either of two
ways, namely, if the count on the marker goes to zero,
or if the workspace becomes empty except for the
marker. The second contingency constitutes an error
condition, indicating that the formula does not con-
tain enough lexical items, so it is necessary to check
the workspace after the failure of the loop to see
whether the count actually has gone to zero. The SCOPE
routine may thus be used to test the wellformedness
of a parsed sentence, as follows: after the loop termi-

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 47

nates, test whether count has gone to zero. If not, for-
mula contains too few words, and is illformed. If so,
check whether any words remain in workspace. If so,
formula contains too many words, and is illformed. If
not, formula is wellformed.

Propositional Logic Translation

Once the input argument is parsed, and all the
SNOVP's and SNONP's have been expanded into complete
s's, the program attempts a propositional logic analysis
of the argument. This involves replacing each s and its
corresponding sentence by a different propositional
symbol, A/V, B/V, C/V, etc. Identical sentences are re-
placed by the same propositional symbol, and con-
tradictory sentences, i.e., sentences that differ only in
that the main verb of one is followed by a NOT are re-
placed by contradictory symbols, e.g., A/V and A/V,
NOT. (The SCOPE routine can be used to find the main
verb of any sentence, by first finding the main verb
phrase, whether it be V, VP*0, or VP*l, and then find-
ing the first verb of the main verb phrase. The main
verb thus located is subscripted with /MAIN.) The
criterion of synonymy that the program employs, i.e.,
that of complete identity in wording and word-order,
is on the face of it extremely strict, but its effects are
somewhat mitigated by the initial dictionary lookup
and its ensuing “tranformations,” which frequently re-
duce two apparently different sentences to the same
wording and word-order. All verbal forms, as previ-
ously noted, are reduced to the present infinitive. This
may be justified by the consideration that verbal tenses
are largely irrelevant to the statement of logical im-
plications. For example, the idea (or proposition) that
the butler's presence implies his being seen may be
expressed in a wide variety of ways, some of which
are obtainable by substituting different forms of the
verb 'to be' in the sentential pattern

If the butler ——present then he ——— be seen.

Some of the possible substitutions are the pairs 'were',
'would be'; 'had been', 'would have been'; and 'be',
'will be'. They may all be regarded as variants of the
basic implication

If the butler be present then he (the butler) be
seen.

The propositional logic translation routine may be
illustrated by the following example, which is a para-
phrase of an example from I. M. Copi's Introduction
to Logic 9, and has been successfully processed by our
program.

If I buy a new car or fix my old car then I'll get to
Canada and stop in Duluth. If I stop in Duluth then
I'll visit my parents. If I visit my parents then I'll
stay in Duluth but if I stay in Duluth then I'll not
get to Canada. Therefore I'll not fix my old car.

The lookup and parsing transform this argument into
the following:

If I buy some new car or I fix my old car then I
getto Canada and I stopin Duluth. If I stopin Duluth
then I visit my parents. If I visit my parents then I
stayin Duluth and if I stayin Duluth then I getto
not Canada. Therefore I fix not my old car.

Replacement of sentences by variables yields:

If A/V or B/V then C/V and D/V. If D/V then F/V.
If F/V then H/V and if H/V then C/V,NOT. Therefore
B/V,NOT.

in which

A/V = I buy some new car
B/V = I fix my old car
C/V = I getto Canada
D/V = I stopin Duluth
F/V = I visit my parents
H/V = I stayin Duluth

At this stage, the decision whether to go further
with the propositional logic analysis is made, the cri-
terion being that, if one or more propositional letters
occur both in the premisses and in the conclusion, then
the propositional logic routine is carried out to its
conclusion, but if there is no such repetition of terms,
then the assumption is made that the propositional
logic analysis could not possibly be successful, and the
program proceeds with the functional logic analyses,
i.e., Analyses II, III, and IV. The particular example
under consideration does, however, pass the test, since
the term B occurs both in the premisses and in the
conclusion, so the partially translated argument is
converted into a fully parenthesized formula of propo-
sitional logic, i.e.

((((((A)OR(B))IMPLIES((C)AND(D)))AND((D)IMPLIES
(F)))AND(((F)IMPLIES(H))AND((H)IMPLIES
(NOT(C)))))IMPLIES(NOT(B)))

This involves the application of a set of rules for the
insertion of parentheses in such a way that the scope
of every C-word (i.e., word corresponding to a logical
connective) is made perfectly precise. For sentences
containing fewer than two binary connectives, this
problem is trivial: P becomes (P), and P AND Q be-
comes ((P) AND (Q)). A great many sentences con-
taining two or more binary connectives likewise in-
volve no difficulty; e.g., IF P, THEN Q OR R becomes
((P) IMPLIES ((Q) OR (R))), and P AND EITHER Q OR
R becomes ((P) AND ((Q) OR (R))). There do, none-
theless, exist ambiguous or borderline cases, such as
P AND Q OR R, concerning which it is useless to lay
down general rules, except perhaps the rule that the
input language should be restricted so as to exclude
them. Ambiguous sentences or clauses are character-
ized by the fact that they do not contain sufficient

48 DARLINGTON

clues or indications as to where to place the paren-
theses. These clues (of which the unambiguous clauses
contain a sufficiency) are of several types. They in-
clude:

(i) relative strength of connectives
(ii) placement of “groupers,” i.e., IF, BOTH, EITHER,
and NEITHER.
(iii) placement of punctuation marks, such as
commas and periods; and
(iv) “symmetry” of connectives.

As for (i), in a sentence like P IMPLIES Q AND R, the
AND may be said to be “stronger” than the IMPLIES, in
that the Q and R are bound together more strongly by
the AND than are the P and the Q by the IMPLIES, re-
sulting in ((P) IMPLIES ((Q) AND (R))) as the natural
grouping. As for (ii) and (iii), the amphiboly of P AND
Q OR R may be resolved either by employing a grouper,
as in P AND EITHER Q OR R, or by inserting a comma,
as in P, AND Q OR R, and in P AND Q, OR R. Or a com-
bination of groupers and commas may be used.
(Apropos, employing the grouper BOTH would not
materially affect this example, as BOTH P AND Q OR R is
still ambiguous.) Point (iv) is perhaps the hardest to
formalize, but it is exhibited in clauses like P IMPLIES
Q OR R IMPLIES S, and P OR Q AND R OR S, in which the
middle connective seems to be the fundamental one
regardless of the intrinsic “strength” of the connectives.
This factor of symmetry apparently operates most
strongly in clauses containing three connectives in
which the two “outer” connectives are the same, but
may differ from the “inner” one. It is debatable,
though, whether the notion of symmetry of connec-
tives can be extended beyond, or even as far as, clauses
containing five connectives.

Our program exploits all four types of clues, and
incorporates them into a set of rules for the placement
of parentheses (see below). These rules are applied in
sequence to a sentence or clause until the main con-
nective is located. Two more clauses are then marked
off, i.e., that to the left of the main connective and
that to the right of it. The leftmost clause is then sub-
divided in the same way into two new clauses. This
procedure is repeatedly applied until all the clauses
are fully parenthesized, where the criterion of full
parenthesization is that every connective occur in the
context '). . .('. If the program fails to find the main
connective of a given clause, it concludes that the
clause is ambiguous, prints it out with a comment to
that effect, and proceeds to parenthesize the rest of
the sentence.

The rules for parenthesizing and grouping are
stated in the following outline.

OUTLINE OF THE PARENTHESIZING AND
GROUPING ROUTINE

The rules listed below are applied in sequence to an

initially parenthesized clause “C,” until the basic con-
nective of c has been found.

1. If C contains no C-words, C is assumed to be fully
parenthesized.

2. If C contains exactly one C-word, the one C-word
is basic. Furthermore, if the one C-word is NOR,
i.e., if C is of the form NEITHER+P+NOR+Q, then
C is replaced by a clause of the form ((P) AND
(Q)).

3. If C contains exactly one C-word directly preceded
by a comma, that C-word is basic, unless it occurs
between IF and THEN.

4. If C contains exactly three C-words, and if C is
“symmetrical,” then the middle C-word is basic.
Furthermore, if C is of the form NEITHER P * Q
NOR R * S, where * may be AND, OR, IMPLIES, or
IFF, then C is replaced by a clause of the form
((NOT(P * Q)) AND (NOT(R * S))).

5. If all the C-words in C are AND, or if all the
C-words in C are OR, then the first C-word is basic.

6. If C contains an AND+IF, not occurring between
IF and THEN, then the AND is basic, unless C also
contains an OR+IF not occurring between IF and
THEN.

7. If C contains an AND+EITHER or an AND+NEITHER,
then the AND is basic, unless it is preceded by an
IF.

8. If C contains an OR+IF, not occurring between IF
and THEN, then the OR is basic, unless C also con-
tains an AND+IF not occurring between IF and
THEN.

9. If C contains an OR+EITHER or an OR+NEITHER,
then the OR is basic, unless it is preceded by an IF.

10. If C is of the form EITHER...............OR Q, then the
last OR is basic.

11. If all the C-words in C are NOR, C is converted
into an equivalent formulation employing NOT and
AND, and the first AND is basic.

12. If C is of the form NEITHER NOR Q, then C is
replaced by a clause of the form ((NOT ())
AND (NOT(Q))).

13. If C contains exactly one IMPLIES+THAT, the
IMPLIES is basic, unless it is preceded by an IF.

14. If C contains exactly one IMPLIES, the IMPLIES is
basic, unless it is preceded by an IF.

15. If C contains exactly one IFF, the IFF is basic,
unless it is preceded by an IF.

16. If C contains a THEN, the THEN is basic. The IF
. . . THEN is replaced by IMPLIES.

At the conclusion of the parenthesization, the for-
mula is “tidied up” by erasing all superfluous groupers,
i.e., all P-words that are not C-words.

In the argument used to illustrate propositional
logic translation, the partially translated formula is
converted into a fully parenthesized formula of propo-
sitional logic, through application of the above set of
rules, as follows.

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 49

(If A/V OR B/V THEN C/V AND D/V) (Input)
((A/V OR B/V) IMPLIES (C/V AND D/V)) (Rule 16)
(((A/V) OR (B/V)) IMPLIES (C/V AND D/V)) (Rule 2)
(((A/V) OR (B/V)) IMPLIES ((C/V) AND (D/V))) (Rule 2)

(IF D/V THEN F/V) (Input)
((D/V) IMPLIES (F/V)) (Rule 2)

(IF F/V THEN H/V AND IF H/V THEN C/V,NOT) (Input)
((IF F/V THEN H/V) AND (IF H/V THEN C/V,NOT)) (Rule 4)
(((F/V) IMPLIES (H/V)) AND (IF H/V THEN C/V,NOT))
(Rule 2)
(((F/V) IMPLIES (H/V)) AND ((H/V) IMPLIES (C/V,NOT)))
(Rule 2)

* * * * *
(B/V,NOT) (Input)
(B/V,NOT) (Rule 1)
* * * * *

The fully parenthesized formulae corresponding to
the sentences of the argument are combined into a
single formula of implicational form, according to the
following procedure. The sentences left of THEREFORE
are taken to be the premisses, and are separated from
those to the right of THEREFORE, which are taken to
be the conclusion. If there are more than one premiss,
e.g.,

(P1). (P2). (P3)........

they are combined into the formula

(((P1) AND (P2)) AND (P3)) ..

The sentences of the conclusion are combined in the
same way. Finally, the premisses are combined with
the conclusion, by changing THEREFORE to IMPLIES,
and putting a set of parentheses around the entire
formula, i.e.,

(Premisses) THEREFORE (Conclusion)

become

((Premisses) IMPLIES (Conclusion))

The fully parenthesized formula is next tested for
validity, using the Wang propositional calculus al-
gorithm10. The principal proof procedure that the pro-
gram employs is a combination of the “one-literal
clause rule” of Davis-Putnam11 and the “matching
algorithm” of Guard12, and it forms the body of the
DC section of the program. As it is desired to obtain
an immediate verdict as to the validity of the propo-
sitional logic formulation, and as it is inconvenient to
switch over to DC and back to DA again, since they are
compiled separately, the Wang algorithm is employed
to test the propositional logic formulae for validity. It
provides a short and neat test of validity, and it is easy

to stick onto the end of the propositional logic transla-
tion routine. It requires that the formula to be tested
be in Polish prefix notation, and our program accom-
plishes this conversion by means of a short routine
that is a modification of a method devised by Yngve.
This routine is described below.

OUTLINE OF ROUTINE FOR TRANSLATING A
FULLY PARENTHESIZED FORMULA INTO
POLISH PREFIX NOTATION

Shelf 1 is output shelf; Shelf 2 is input shelf; input
formula is stored in expanded form on Shelf 2.

1. Read in next item from Shelf 2.
Succeed: go to 2.
Fail: DONE.

2. Is item a *) ?
Yes: erase it; erase first *(on Shelf 1; go to 1.
No: is it a binary connective?
Yes: place it directly left of first *(on Shelf 1; go
to 1.
No: store it at front of Shelf 1; go to 1.

This routine leaves the formula in reverse Polish nota-
tion. It is, however, a simple matter to reverse it back
again. The formula of our example then becomes

IMPLIES + AND + AND + AND + IMPLIES + A/V + B/V
+ IMPLIES + C/V + D/V + IMPLIES + D/V + F/V +
AND + IMPLIES + F/V + H/V + IMPLIES + H/V + NOT
+ C/V + NOT + B/V

The formula is now ready to be tested by the Wang
algorithm, and the answer 'valid' is readily obtained.

The programming of the Wang algorithm and the
more extensive proof procedure algorithm employed
in section DC of the program illustrate the wide ap-
plicability of COMIT. Originally designed as a pro-
gramming language for mechanical translation7, it has
also proved useful for nonlinguistic types of problems,
and is no less efficient in this area than many other
list-processing languages. Our program for the Wang
algorithm runs quite rapidly, and proves reasonably
long formulae in one or two seconds or less. Our proof
procedure program for functional logic runs less
rapidly, but this is attributable to the greater difficulty
of proving theorems in functional logic rather than to
any deficiency in COMIT. These proof procedure pro-
grams are described in greater detail in the section
entitled “Methods of Logical Evaluation.”

If the propositional logic routine gives the answer
'valid' for a formula, then the program stops. If, how-
ever, the answer 'invalid' is given, or if the earlier test
for the feasibility of a propositional logic analysis was
negative, then the parsed argument is written out into
“Channel A” (actually called “A CHANEL”), from
where it is read in at the start of the next section of
the program, i.e., DB.

50 DARLINGTON

Functional Logic Translation

Section DB of the program, which translates the
parsed arguments provided by DA into functional logic
notation, is based on the interaction of three principal
routines, i.e., “PHI,” “SFORM,” and “LF.” The routine
PHI determines the sentence or part of a sentence that
should be analysed next, SFORM converts this string
into a quasi-logical formula, and LF translates the
quasi-logical formula into a complete formula of func-
tional logic. We shall first give an example of the pro-
cedure, and then discuss it in detail.

All who support Ickes will vote for Jones. Everyone
whom Anderson will vote for is a friend of Harris.
Jones is a friend of no one who is a friend of Kelly.
Harris is a friend of Kelly. Therefore Anderson will
not support Ickes.

The first sentence of this argument, which is a para-
phrase of an example from I. M. Copi's Symbolic
Logic8 was used in a previous example. As pointed
out earlier, a ONE/ADJN was inserted between 'All' and
'who', the 'will' was deleted, and the 'vote for' was
compressed to form a new verb, 'votefor'. At the start
of Analysis II, an additional change is made, i.e., all
the words of the predicate are compressed into a single
symbol, which is regarded as an intransitive verb. The
parsed sentence is thereby changed into the form given
below, complete with subscripts.

S/.1 + NP/.0 + NP*1/.1 + ALL/.32767,DET + NP*0/.0 +
NP*2/.1 + ADJNCL/.0 + ONE/.32767,ADJN + RELCL/.0 +
RCL*2/.1 + WHO/.32767,RELPR + VP*0/.1 + V/.0 +
SUPPORT/.32767,VPOS + NP/.0 + ICKES/.32767,PRNAME +
V/.0 + VOTEFORJONES/.32767,VPOS,MAIN

The routine SFORM then determines the quasi-logical
form of the parsed sentence, i.e.,

All + X/A + PHI/.1,A + P/.2,A

(“All A such that PHI/.1,A is P/.2,A.”)

in which

PHI/.1 = NP*0/.0 + NP*2/.1 + ADJNCL/.0 + ONE/.32767,ADJN
+ RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR +
VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP*0/.0
+ ICKES/.32767,PRNAME

and

P/.2 = VOTEFORJONES/.32767,VPOS,MAIN

Each PHI, followed by the string that it denotes, is
stored on Shelf 9. Also, each IND/.n, followed by the
proper name that it denotes, is stored on Shelf 16;
each P/.n (n less than 500), followed by the unary
predicate that it denotes, is stored on Shelf 17; and
each P/.n (n equal to or greater than 500), followed
by the binary or ternary predicate that it denotes, is
stored on Shelf 18. Shelf 17 is initialized with

 P/.1 + ONE + P/.0 + IS

so the unary predicate VOTEFORJONES is denoted by
P/.2, whose numerical subscript is greater by one than
that of the largest P already on Shelf 17.

The routine LF converts the quasi-logical formula
into a complete formula of functional logic, i.e.,

(A/Q X/A)((PHI/.1,A) IMPLIES/OP (P/.2,A))

The translation, however, is not finished until all the
PHI's have been replaced by complete logical formu-
lae. The PHI routine reads in PHI/.1,A + (etc.) from
Shelf 9, and replaces it by

((P/.1.A) AND/OP (PHI/.1,A))

in which
P/.1 = ONE

and
PHI/.1=RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR +

VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP*0/.0
+ ICKES/.32767,PRNAME

This substitution is made in the partially translated
formula, which then becomes

(A/Q X/A)(((P/.1,A) AND/OP (PHI/.1.A)) IMPLIES/OP
(P/.2.A))

The routines SFORM and LF next convert PHI/.1,A into
P/.3,A, in which

P/.3 = SUPPORTICKES

so the complete translation of the first premiss, result-
ing from Analysis II, is

(A/Q X/A)(((P/.1,A) AND/OP (P/.3,A)) IMPLIES/OP
(P/.2,A))

Finally, the formula is simplified by eliminating the
dummy term P/.1,A, yielding

(A/Q X/A)((P/.3,A) IMPLIES/OP (P/.2,A))

as the final version.
Analysis III produces a more refined logical transla-

tion of the first premiss. The words of the predicate,
i.e., VOTE + FOR + JONES, are not compressed as they
are in Analysis II, so the quasi-logical form of the
parsed sentence is

ALL + X/B + PHI/.1,B + P/.500 + IND/.0

in which
PHI/.1 = NP*0/.0 + NP*2/.1 + ADJNCL/.0 + ONE/.32767,ADJN

+ RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR +
VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP/.0
+ ICKES/.32767,PRNAME

and
P/.500 = SUPPORT

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 51

and
IND/.0 = JONES

whose logical translation is
(A/Q X/B)((PHI/.1,B) IMPLIES/OP (P/.500 X/B IND/.0))

PHI/.1,B is next replaced by

((P/.1,B) AND/OP (PHI/.1,B))

in which

P/.1 = ONE

and
PHI/.1 = RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR +

VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP/.0 +
ICKES/.32767,PRNAME

yielding the formula
(A/Q X/B)(((P/.1,B) AND/OP (PHI/.L,B)) IMPLIES/OP
(P/.500 X/B IND/.0))

PHI/.1,B is next converted into P/.501 + X/B + IND/.1,
and P/.1,B is eliminated, yielding the formula

(A/Q X/B)((P/.501 X/B IND/.1) IMPLIES/OP (P/.500 X/B
IND/.0))

in which

P/.501 = SUPPORT

and

IND/.1 = ICKES

Since the first premiss contains no NP'S beginning with
THE, Analysis IV gives the same result as Analysis III.
This is also true of the remaining sentences of the argu-
ment. The translations of the premises and conclusion,
resulting from Analyses II and III, are given below.
* * * * *
First premiss
II (A/Q X/A) ((P/.3,A/ IMPLIES/OP (P/.2,A))
III (A/Q X/B)((P/.501 X/B IND/.1) IMPLIES/OP (P/.500 X/B

IND/.0))

Second premiss
II (A/Q X/D)((P/.5,D) IMPLIES/OP (P/.4,D))
III (A/Q X/E)((P/.500 IND/.3 X/E) IMPLIES/OP (P/.502 X/E
IND/.2))

Third premiss
II (P/.6 IND/.0)
III (A/Q X/G)((P/.502 X/G IND/.4) IMPLIES/OP (NOT(P/.502

IND/.0 X/G)))

Fourth premiss
II (P/.7 IND/.2)
III (P/.502 IND/.2 IND/.4)

Conclusion
II (NOT(P/.3) IND/.3)
III (NOT(P/.501 IND/.3 IND/.1))

The complete lexicon for the above argument is as

follows.
IND/.4 + KELLY + IND/.3 + ANDERSON + IND/.2 + HARRIS
+ IND/.1 + ICKES + IND/.0 + JONES

P/.7 + FRIENDOFKELLY + P/.6 + FRIENDOFNOONEWHO-
FRIENDOFKELLY + P/.5 + ANDERSONVOTEFOR + P/.4 +
FRIENDOFHARRIS + P/.3 + SUPPORTICKES + P/.2 + VOTE-
FORJONES + P/.L + ONE + P/.0 + IS

P/.502 + FRIENDOF + P/.501 + SUPPORT + P/.500 + VOTE-
FOR

After the program has completed all the functional
logic analyses (i.e., II, III, and IV) for an input argu-
ment, it selects one of them as the basis of the proof
that will be attempted in Section DC of the program.
In making this choice, the program makes a list of the
terms in the premisses and conclusion, where a "term"
may be a propositional letter (e.g., A/V, B/V, etc.),
an individual name (e.g., IND/.0, IND/.1, etc.), or a
unary, binary, or ternary predicate (e.g., P/0, P/.l,
.... P/.500, P/.501, etc.). It then searches for
repetition of terms between premisses and conclusion.
The repetition of at least one term between the pre-
misses and conclusion may be stated as a necessary
condition of validity of a nontrivial argument, i.e., an
argument with nonselfcontradictory premisses and non-
tautological conclusion. If an analysis of an argument
contains no repetition, then it is ruled out, but if it
contains some repetition, then it is regarded as pro-
viding the basis of a possible proof. In Analysis I, the
repetition of just one term is sufficient to justify having
a go at a proof in propositional logic; if the argument
cannot be proven in propositional logic, the Wang
algorithm will quickly determine this, and send the
program on into Analyses II, III, and IV. For these last
three analyses, something a little stronger is required
than repetition of just one term. In fact, the program
looks for the simplest analysis in which all the terms
of the conclusion are repeated in the premisses. This
criterion is still not strong enough, mainly because
there are some arguments with short conclusions con-
taining just a few terms, all of which are repeated in
the premisses under Analysis II, but the arguments
nevertheless require more refined analyses for the
premisses. The program, therefore, looks for internal
repetition within the premisses. The analysis that is
finally selected as the basis for the attempted proof is
the simplest analysis according to which all the terms
of the conclusion are repeated in the premisses and
according to which at least one term of the premisses
is repeated in the premisses. If such an analysis can-

52 DARLINGTON

not be found, then the program settles for Analysis IV.
The criterion as thus defined is adequate for all the
examples that have been submitted to the program thus
far. It seems neither too weak nor too strong, in that
it takes account of the fact that some repetition of
terms is a necessary condition of validity of a non-
trivial argument, but it does not require 100 per cent
repetition. It is, however, a purely pragmatic criterion,
and there is no guarantee that it will always work, so
we have designed the program in such a way that, in
ease of failure of the criterion, the operator may specify
an alternative analysis. In order to facilitate selection
by the operator, should it be necessary, the formulae
resulting from Analyses II, III, and IV, i.e., the output
of Section DB, are written out into Channel B, whence
they are read in at the start of DC. The formula selected
by the program is stored first, and it is the one that will
be tested in the absence of any contrary instructions
by the operator. If the operator decides that the for-
mula selected cannot be proven (the logical evaluation
part of the program is a proof procedure rather than a
decision procedure, and is therefore incapable of re-
jecting invalid formulae, except in Analysis I), he
may interrupt the evaluation, restart DC, and type in
— .2+, —/.3+, or —/.4+ at the start, depending on
which analysis he wishes the program to try.

For the example that we have been considering, the
propositional logic analysis, i.e.,

A. B. C. D. THEREFORE E.

is rejected by the criterion, since there is no repetition
at all between premisses and conclusion. In Analysis
II, there are two terms in the conclusion, i.e., P/.3 and
IND/.3, of which only the first recurs in the premisses,
so Analysis II is also rejected by the criterion. Analysis
III, however, is accepted by the criterion, since all
three terms of the conclusion, i.e., IND/.1, IND/.3, and
P .501, recur in the premisses, and several terms oc-
cur more than once in the premisses; the formula re-
sulting from Analysis III is in fact a theorem and is
subsequently proven in Section DC.

Once an analysis is selected, by the program or by
the operator, the premisses and conclusion are com-
bined into a single formula of conditional form, in
which the conjunction of the premisses is taken to
imply the conclusion. The method by which this is
accomplished was described earlier in the section on
propositional logic translation. If the formula pertains
to functional logic, the additional step is performed of
putting it into prenex normal form, in which all the
quantifiers are on the left, and the scope of each
quantifier is the entire formula to the right of it. The
prenex normal form of a formula is required by the
functional logic evaluation program. It is arrived at
through the application of the PRNX routine, which
is based upon the repeated application of the follow-
ing standard set of logical equivalences, until all the
quantifiers are on the left. ('P' is any formula that con-

tains no free occurrence of V; 'OP' may be 'AND', 'OR',
or 'IMPLIES'; and 'Q' may be 'Q/ALL' or 'Q/SOME'.)

P OP (QX)(FX) = (QX)(P OP FX)
(AX) (FX) IMPLIES P = (EX) (FX IMPLIES P)
(EX) (FX) IMPLIES P = (AX) (FX IMPLIES P)
(QX)(FX) AND/OR P = (QX)(FX AND/OR P)

Negated quantifiers are eliminated by the application
of the pair of equivalences

NOT(AX)(FX) = (EX)(NOT FX)
NOT(EX)(FX) = (AX)(NOT FX)

The PRNX routine operates as follows.

OUTLINE OF THE PRNX ROUTINE

Universal quantifiers, i.e., (A/Q X/A), (A/Q X/B), etc.,
are changed to Q/ALL,A, Q/ALL,B, etc. Existential quan-
tifiers, i.e., (E/Q X/A), (E/Q X/B), etc., are changed to
Q/SOME,A, Q/SOME,B, etc. Shelf 1 is for initial Q's.

1. Start. Is first item in workspace a Q?
1.1. Yes: Queue item onto Shelf 1; go to 1.
1.2. No: Read up to first Q.

1.21. Succeed: go to 2.
1.22. Fail: queue workspace onto Shelf 1; Shelf 1 con-

tains prenex formula; Done.

2. (In the following, 'Q' refers to the first Q in the
workspace.) Is Q preceded by *(+NOT?
2.1. Yes: change *(+NOT+Q/ALL to Q/SOME+*(+

NOT; change *(+NOT+Q/SOME to Q/ALL+*(+
NOT; go to 3.

2.2. No: go to 3.

3. Apply whichever one of the following rules is ap-
propriate.

((P) OP Q(R)) = Q((P) OP (R));
(Q/ALL(P) IMPLIES(R)) = Q/SOME((P) IMPLIES(R));
(Q/SOME (P) IMPLIES (R)) = Q/ALL ((P) IMPLIES (R));
(Q(P) AND/OR (R)) = Q((P) AND/OR (R));

go to 1.

The prenex normal form of the formula resulting
from Analysis III of our example is

(E/Q X/B) (E/Q X/E)(E/Q X/G) ((((((P/.501 X/B IND/.1)
IMPLIES (P/.500 X/B IND/.0)) AND ((P/.500 IND/.3 X/E)
IMPLIES (P/.502 X/E IND/.2))) AND ((P/.502 X/G IND/.4)
IMPLIES (NOT(P/.502 IND/.0 X/G)))) AND (P/.502 IND/.2
IND/.4)) IMPLIES (NOT(P/.501 IND/.3 IND/.1)))

The overall plan of Section DB, which translates the
parsed sentences of the input arguments into logical
notation according to Analyses II, III, and IV, is given
below.

OUTLINE OF SECTION DB

Shelf 22 is input shelf for parsed sentences; Shelves
19, 20, and 21 are output shelves for storing transla-

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 53

tions resulting from Analyses II, III, and IV, respec-
tively; Shelf 25 is for recording which analysis the
program is in at a given time, and is initialized with
'II+III+IV'; Shelf 10 is copy of input Shelf 22; Shelf
9 records the PHI's and the material that they abbrevi-
ate; Shelves 1, 12, and 24 are for storing translated or
partially translated formulae.

1. Start. Is anything on Shelf 25?
1.1. Yes: put copy of Shelf 22 on Shelf 10; go to 2.
1.2. No: Analyses II, III, and IV are finished; go to 8.

2. Read in parsed sentence from Shelf 10.
2.1. Succeed: go to 3.
2.2. Fail: go to 7.

3. Is program in Analysis II?
3.1. Yes: compress all the words in the predicate (ex-

cept NOT) into one word, and subscript it with
/VPOS. If predicate is positive, it will be of the
form V + $1/VPOS; if negative, it will be of the
form V+VNEG+$1/VPOS+NOT. Go to 4.

3.2. No: go to 4.

4. Is program in Analysis III?
4.1. Yes: if there is any noun phrase whose first word

is THE, compress all the words in the noun phrase
into one word, and subscript it with /PRNAME;
noun phrase will then be of the form NP + $1/
PRNAME; go to 5.

4.2. No: go to 5.

5. Enter SFORM, and determine quasi-logical form of
parsed formula; enter LF, and determine logical trans-
lation of quasi-logical formula; if any PHI's are created
in SFORM, store them on Shelf 9, followed by the mate-
rial that they abbreviate. Is Shelf 12 empty?
5.1. Yes: store formula on Shelf 12; go to 6.
5.2. No: formula is the logical translation of a certain

PHI/.n; replace all occurrences of PHI/.n in the
formula on Shelf 12 with copies of the formula in
the workspace; go to 6.

6. Read in next PHI from Shelf 9.
6.1. Succeed: go to 5.
6.2. Fail: transfer formula from Shelf 12 to Shelf 24;

use ** to mark end of formula; go to 2.

7. Combine formulae on Shelf 24 into a single formula
of conditional form, in which the conjunction of the
premisses implies the conclusion; store formula on
Shelf 19, 20, or 21, depending on whether program is in
Analysis II, III, or IV; delete first item on Shelf 25; go
to 1.

8. Apply selection criterion to formulae on Shelves 19,
20, and 21 to decide which one is likeliest to yield the
simplest proof; write out formulae into Channel B, with
the selected one first; each formula is followed by
—/.n, where n is the number of the analysis that pro-
duced the formula; done.

The routines SFORM, LF, and PHI are the principal
subroutines of DB. Instead of attempting to describe
them verbally in detail, we shall reproduce the actual
COMIT rules that embody these routines, accompanied
by a paragraph or so of explanation in each case. The
expression '$0', which occurs frequently in these three
routines, is a feature of the time-sharing version of
COMIT but is not explained in the COMIT manuals. It
denotes the beginning or end of the workspace.

SFORM ROUTINE

(For translating parsed sentences into quasi-logical
formulae)

Shelf 1 is input shelf for sentence or part of sentence
whose quasi-logical form is to be determined; Shelf 9
is for PHI's; Shelf 11 is for variables X/A, X/B, etc.;
Shelf 14 is output shelf; Shelf 15 records largest PHI
currently on Shelf 9 (Shelf 15 is initialized with
PHI/.0); Shelf 16 is for terms IND/.n; Shelf 17 is for
terms P/.n (n less than 500) denoting unary predi-
cates (Shelf 17 is initialized with P/.1+ONE+P/.0 +
IS); Shelf 18 is for terms P/.n (n equal to or greater
than 500) denoting binary and ternary predicates.
SFORM $//*A1 1 *
* $0 + VP*1=–/.1 + –/SVP1//*S10 2 SCOPE
* $0 + NP + $1/PRNAME + $ = 3 + 4 + –/QSH14 //*SI 2,*A16 2,–
*S10 3 INDCHECK
* $0 + NP + NP*1 + $L/DET + $=4 + 5 //*Q14 1,*Q8 2,*N15 1 SF5
* $0 + V + $1/VPOS = 3+ –/QSH14//*S10 2,*A17 2 P1CHECK
* $0 + V+VNEG + $1/VPOS + NOT = 4 + 5+ –/QSH14 //*S4 2,–
*S10 3,*A17 2 P1CHECK
* $0 + VP*0 + V + IS + $ = P/.0 + 5 //*Q14 1,*Q1 2 SFORM
* $0 + VP*0 + V + VNEG + IS + NOT + $ = P/.0,NOT + 7//*Q14 1,–
*Q12 SFORM
* $0 + VP*0 + V+$L/VPOS + $=4 + 5+ –/QSH14 //*Q1 2,$S10 3,–
*A18 2 P2CHECK
* $0 + VP*0 + V + VNEG + $1 + $1 + $ = 5 + 7+–/QSH14 + NOT //–
*Q1 2,*S10 3,*A18 2,*S4 4 P2CHECK
* $0 + IVP+$ +V+$1 + $0 = 3+VP*0 +4 +5 //*Q1 1 2 3 4,*N14 1,–
*Q1 1 SFORM
* $0 + IVP+$ + V+ $3+ $0= 3+VP*0 + 4 +5//*Q1 1 2 3 4,*N14 1,–
*Q11SFORM
* *X //*Q14 1 *
* $1 Z
SFO $//*A14 1 *
* Y= NV
* LF
NV $ = X+1 //*N11 1 $
NV1 $1 + $ + Y + PHI+$ = 1+4 + 2 + L+4/$*1 + 5 //*Q14 3 4 5 6,–
*A9 3 *
* $0 + $1 + $1 + $ + 3=4 + 5/$*2//*X9 SF1
OV$ + X = 2 + L + 2 NVI
SF1 $//*A14 1 *
* Y= SF2
* LF
SF2 $0 + THE + X + PHI + P/.0,NOT + SOME + Y + PHI NV

54 DARLINGTON

* $0 + THE + X + PHI + P/.0 + NO + Y + PHI SF3
* SF4
SF3 P/.0,NOT OV
* NV
SF4 $0+ $1/DET +PHI+ P/.0 +SOME+ Y + PHI OV
* $0 + $1/DET + X + PHI + P/.0 + NO + Y + PHI OV
* NV
SF5 PHI= 1/.I1 + 1/.I1 //*S15 2 SF6
* $=PHI/.0 SF5
SF6 $=Y+1 + 1+ –/.1+ –/SF7//*Q14 1 2,*Q9 3,*S10 5,–
•A8 5 SCOPE
SF7 $//*A8 1,*Q1 1,*A7 1,*Q9 1 SFORM
SVP1 $//*A8 1 *
* $0 + PPCL + PPCL*2 + $L/PREP + $ = 4 + 5 //*Q2 1 2,*A7 1 *
* $ + $1/VPOS = 1 + 2 + X//*Q1 1,*N2 3,*K2 3 *
* $1 + $ = 1/.32767,VPOS,MAIN + 2 //*Q1 1 2,*A2 1,–
* Q1 1 SFORM
INDCHECK $1 = 1/–$ *
* $1 + $ + $1 +1 + $ = 3+ 2 + 3 + 4 + 5 //*S14 1,*Q16 2 3 4 5,–
* N10 1 $
* $1 + $1 + $ = 2/.I1 + 2/.I1 + L + 2 + 3//*S14 1,*Q16 2 3 4 5,–
* N10 1 $
* $1=IND/.0 + IND/.0+1 //*S14 1,*Q16 2 3,*N10 1 $
P1CHECK $1 = 1/–$ *
* $1 + $ + $1 + 1 + $ = 3 + 2 + 3 + 4 + 5 //*Q17 2 3 4 5,–
* N4 2 NCHECK
* $1 + $1 + $ = 2/.I1 + 2/.I1 + L + 2 + 3 //*Q17 2 3 4 5,–
* N4 2 NCHECK
P2CHECK $1 = 1/–$ *
* $1 + $ + $1 + 1 + $ = 3 + 2 + 3 + 4 + 5 //*Q18 2 3 4 5,–
* N4 2 NCHECK
* $1 +$1+$ =2/.I1+2/.I1 + L + 2 + 3//*Q18 2 3 4 5,–
* N4 2 NCHECK
* $1=P/.500 + P/.500 + 1 //*Q18 2 3,*N4 2 NCHECK
QSH14 $//*N14 1,*Q14 1 SFORM
NCHECK $1 + NOT=1/NOT //*S14 1,*N10 1 $
* $1 + $//*S14 1,*S4 2,*N10 1 $
SCOPE $0 + $1/.G0 + $1 = 2/.I.*3 + 3 //*Q7 2 SCOPE
* $0 + $1/.0 + $ = 3//*Q8 1,*N10 1 $
* Z

In the first and main section of the SFORM routine,
the principal noun phrases and verb phrases of the
parsed sentence are looked up, and replaced by ab-
breviations. Proper names are replaced by terms IND/.n,
other noun phrases are replaced by expressions of the
form $l/DET+Y+PHI/.n, and verbs are replaced by
terms P/.n (or P/.n/NOT) denoting unary, binary, or
ternary predicates. The terms IND/.n and P/.n are de-
termined from Shelves 16, 17, and 18. If a term is not
found on its appropriate shelf, a copy of it is put
there, and its numerical subscript /.n is increased by
1. The terms PHI/.n abbreviate noun phrases minus
their determiners; each PHI/.n, followed by the mate-
rial that it abbreviates, is stored on Shelf 9, and its
numerical subscript /.n is greater by 1 than that of
the largest PHI already on Shelf 9. The rest of SFORM
replaces the terms Y with the variables X/A, X/B, etc.,

from Shelf 11. In some cases, mainly those in which
the main verb is P/.0 (IS) and is directly followed by
SOME or NO, both PHI's in the formula are replaced by
the same x; otherwise, the Y's are replaced by different
x's. In either case, each PHI is given the literal subscript
of its immediately preceding X.

The program next enters the LF routine, which
translates the quasi-logical formulae into fully paren-
thesized formulae of functional logic.

LF ROUTINE

(For translating quasi-logical formulae into fully paren-
thesized formulae of functional logic)
Program uses Shelves 1 and 14 for storage of formulae
or parts of formulae.
LF ALL+$ + $1/NOT = SOME + 2 + 3 *
* NO + $1 + NOT = ALL + 2 + 3/–NOT *
* $ I/NOT + ALL = 1 + SOME *
* $1/NOT + NO=1/–$,.*1 + SOME *
* P/.0 + NO = 1/NOT + SOME *
LF1 $0 + $1 + $1 + $0 = *(+ 3 + 2 + *) LF16
* $0 + $1 + $1 + $1 + $0=*(+ 3 + 2 + 4 + *) LF16
* $0+$1+$1+$1+P+ $0=*(+2+3+*) +*(+ *(+4 + *) + IA + *(+ –
5/$*3+ *) + *) LF2
* $0 + $1 + $1 + $1 + $1 + $0=*(+ 3 + 2 + 4 + 5+*) LF16
* $0+$1+P+$1+ $1+$1+$0=*(+4 +5+*)+ *(+ *(+ 6+*) + IA + –
*(+ 3 + 2 + 5+ *) + *) LF2
* $0+$1+$1+$1+P+$1+$0=*(+2+3+*) + *(+ *(+4+ *) + IA + –
*(+ 5 + 3 + 6 + °) + *) LF2
* $0 + $1 + $1 + $1 + $1+$3+ $0+*(+2+3+*)+*(+ *(+4 + *) + –
IA + 3 + 5 + 6 //*Q14 1 2 3 4 5 6 7 8 9 LF1
* $0+ $1+P + X +$1+$1+$1+$0=*(+5+6+*) + *(+ *(+ 7+*) + –
IA+*(+ 3 + 2 + 4 + 6 + *) + *) LF2
* $0+ $1+P + $1 + X + $1 + $1+$0=*(+4 +5+*)+*(+*(+6+*)+ –
IA+*(+ 3 + 2 + 5 + 7+*) + *) LF2
* $0 + $1+ $1+ $1+P+$1+ $1+$0=*(+2 + 3 + *) +*(+ *(+ 4 + –
) + IA+(+ 3 + 5 + 6 + 7+*) + *) LF2
* $0 + $1+P+ $1+ $1+ $1+ $3+$0=*(+4 + 5 + *) + *(+*(+ 6 + –
*) + IA + 2 + 3 + 5 + 7//*Q14 1 2 34 5 6 7 8 9 LF1
* $0+ $1+ $1+ $1+P+$=*(+2+3+*)+ *(+ *(+4 + *) + IA + 3 + –
5 + 6 //*Q14 123456789 LF1
LF2 $ = X+1 //*A14 1 *
* $=–/.0 + 1 + 1 //*S14 3 *
LF3 $1 + $ + IA=1/.I1 LF3
* $1 + $ = 1 *
LF4 $1/.G1 = 1/.D1 + *) //*Q14 2 LF4
* $//*A14 1 *
LF5 $ + ALL + $ + IA = 1 + A/Q + 3 + IMPLIES/OP //–
*Q14 1 2 3 4 LF5
* $ = X+1 //*A14 1 *
LF6 $ + SOME + $ + IA = 1 + E/Q + 3 + AND/OP //–
*Q14 1 2 3 4 LF6
* $ = X+1 //*A14 1 *
LF7 NO + $ + IA + $ = A/Q + 2 + IMPLIES/OP + *(+ NOT + –
4 + *) LF7
LF8 $ + ONLY+$ + IA = 1+2 + 3 + 4–/.1 //*Q14 1 2 3 4 LF9
* LF11

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 55

LF9 $0 + $1 + *(= 2/.I1 + 3//*Q14 1 2 LF9
* $0 + $1 + *) = 2/.DL + 3//*Q14 1 2 LF10
* $1 + $1 //*Q14 1 2 LF9
LF10 $0 + I1/.GO LF9
* $1 = 1 + *Q//*A14 1 *
* *) + *Q = 2+L *
* ONLY + $ + $3 + IA + *(+ P/NOT + $ + *) + *Q = E/Q + 2 + –
*(+ NOT + 3 + *) + AND/OP + 5 + 6/ – NOT + 7 + 8 LF8
* ONLY + $ + $3 + IA + *(+ $ + *) + *Q = A/Q +2+5+6+7+–
IMPLIES/OP + 3 LF8
LF11 *(+ THE + $1 + $3 + $1 + $1 + IA = 2 + 3 + 5 + 7 //*N11 4,–
*Q14 1 2 3 4 LF11
* //*X14 *
LF12 THE + $1+$1+$1+$=*(+ E/Q + 2 + *) + *(+ *(+ 3 + *) + –
AND/OP+ 5+*(+ A/Q + 4 + *) + *(+ *(+ *(+ PHI/.*3,$°4 + *) + –
IMPLIES/OP + *(+*=+2 + 4 +*) + *) + AND/OP + *) //–
*Q14 28 LF12
* $ = 1 + X //*A14 2 *
LF13 *(+$1/Q+X+*)+ *(+ *(+ PHI + *) + $1/OP + *(+ P/.0,NOT–
+ 3 + 3 + *) + *) = 6 + NOT + 6 + 7 + 8 + 8 LF13
LF14 *(+ $1/Q + X + *)+*(+ *(+ PHI + *) + $1/OP + *(+ P/.0–
+ 3 + 3 + *)+*) = 6 + 7 + 8 LF14
LF15 NOT+*(+ $1/NOT+$ + *) = 3/–NOT + 4 LF15
* NOT+*(+ P + $+*) = 3/NOT + 4 LF15
LF16 P/.0 = * = /$*1,–. LF16
Q $//*Q14 1 SH24CHECK

The first five rules of the program perform a few
simple verbal changes, such as elimination of double
negatives, and conversion of a sentential form like 'ALL
X/A IS/NOT X/B' into the logically more accurate form
'SOME X/A IS/NOT X/B'. The second main section of the
program, headed by the rule LF1, searches for a rule
that applies to the sentential form of the sentence, and
translates or partially translates it into logical notation,
queuing the translated part onto Shelf 14, and in some
cases leaving part of the formula behind in the work-
space for further translation. The term 'IA' is used in
this section to stand for 'IMPLIES/AND'. The rest of the
program adjusts the parenthesization, decides whether
IA is IMPLIES or AND, inserts negatives in sentences that
contain NO, rearranges sentences contain ONLY into
equivalent forms containing ALL, and performs a spe-
cial set of operations on sentences containing THE so
as to make explicit the fact that such sentences express
the unique existence of objects possessing certain prop-
erties.

PHI ROUTINE

(For selecting the input phrases for the SFORM and LF
routines)

Shelf 13 is input shelf, and is initialized with first
PHI+on Shelf 9; Shelves 7, 8, and 26 are for
temporary storage.
PHI $//*A13 1 *
* $1/ADJN + $ //*S26 2 PHI01
* PHI02

PHI01 RELCL +$ = 1 + 2 + X //*A26 3 PHI02
* PPCL+$ = 1 + 2 + X //°A26 3 PHI02
* $ = 1 + X//*A26 2 *
* PHI+$ + $L/ADJN + $ = 1 + 3 + 4+ –/14PAR //*S13 3 1,–
*S10 4,*A17 3 P1CHECK
PHI02 $0 + PHI + RELCL + RCL*2 + $ = 2 + 4 + 5//*S13 1,–
*Q7 2 3 PHI03
* $0 + PHI + RELCL + RCL*1 + RCL*2 + $ = 2+ –/.1 + 5 + 6 + –
–/PHI04 //*S13 1,*S10 5 SCOPE
* $0 + PHI + PPCL + PPCL*2 + $ = 2 + 4 + 5 //*S13 1,–
* Q7 2 3 PHI05
* $0 + PHI + PPCL + PPCL*1 + PPCL*2 + $ = 2+ –/.1 + 5 + 6 + –
–/PHI06 //*S13 1,*S10 5 SCOPE
* PHI+$1 Z
* PHI= //*S13 1 RPL01
PHI03 $ = X + X //*N13 1,*A8 2,*S13 2 1,*A7 1 *
* $2 + $ = 2 //*S7 1,*N25 1 *
* $ = 1 + RC+1 //*S25 1,*K2 3 DAN
PHI04 $ = X + X //*N8 1,*N8 2 *
* RCL*3 + $1/CONJ PHI03
* Z
PHI05 $ = X + X //*N13 1,*A8 2,*S13 2 1,*N25 1 *
* $ = 1 + PP+1//*S25 1,*K2 3 DAN
PHI06 $ = X + X //*N8 1,*N8 2 *
* PPCL*3 + $1/CONJ PHI05
* Z
DAN $1 //*L1 DAN1
* Z
* DAN1 PPII= PPII

PPIII= PPIV
PPIV= PPIV
RCII= RCII
RCIII= RCIV
RCIV= RCIV

PPII $//*A7 1 RC201
PPIV $//*A7 1 *
* $1 + $1 + $ = *X + VP*0 + V + 2/–$,VPOS + 3//*Q14 1,–
*Q1 2 3 4 5 SFORM
RCII $//*N7 1 *
* $1/VP RCII
* $ = 1 + X//*A7 2 *
* $0 + $1 + $1/VPOS + NOT //*S4 4 RC201
* VNEG + $1/VPOS + NOT + $0 //*S4 3 *
RC201 $ + $L/.G32766 = 2 //*Q2 1 RC201
* $ = X+ –/14PAR //*A2 1,*K1,*S10 2,*A17 2 P1CHECK
RCIV $ = *X //*S14 1,*A7 1,*S1 1 SFORM
NEWPHI $//*A9 1 *
* PHI + $ + PHI + $ //*Q13 1 2,*Q9 3 4 PHI
* PHI+$//*Q13 1 2 PHI
* $//*A12 1 *
* $ =*–*.THE – LOGICAL – TRANSLATION – IS*. – *. + 1 + 1 + –
** //*WAL1,*WSL2,*Q1 3 4 *
* $//*A2 1,*A3 1,*A4 1,*A5 1,*A6 1,*A7 1,*A8 1,*A9 1,*A12 1,–
*A13 1,*A14 1,*A15 1,*A23 1,*A24 1,*N22 1 *
* THEREFORE = 1 + 1 //*S1 1,*S22 2 *
* $//*S22 1 H
RPL01 $//*A24 1 *

56 DARLINGTON

* $ = 1 + 1//*S14 1,*S24 2,*N13 1 *
8 $1 = 1/–. + 1 //*S13 2,*A14 2 *
RPL02 $L + $ + P/.L500=L + 2 + 3/$*1 //*Q7 2 3 RPL02
* $1 + $ = 1+X + 2//*A7 2 *
RPL03 $1 + $ + *X = 1 + 2 + X/$*1 //*Q7 2 3 RPL03
* $1 + $ = 2 //*Q7 1 *
RPL04 $ = X + X+** + X //*N11 1,*A7 2,*A12 4 *
RPL05 $1 + $ + ** + $ + *(+ 1 + *) = 1 + 2 + 3 + 4 + 2 //–
*Q12 4 5 RPL05
* $1 + $ + ** + $ = 1 + 3 + 4 //*A12 2 *
* $1=PHI/.*1 *
* $1+$+1+$=1/$*3+2+3+ 4 //*S13 1,*Q12 2 3 4 RPL01
* $1 + $ = 2 //*Q12 1,*A24 1 NEWPHI
* Z
SH24CHECK $//*A24 1 *
* $1 + $ = *(+1 + 2 + AND/P.CONJ + X + *) //*A14 5,–
*Q24 1 2 3 4 5 6 SH12CHECK
* $//*A14 1,*Q24 1 *
SH12CHECK $//*N12 1 *
* $1 //*S12 1 PHI
* $ //*A24 1,*S12 1 NEWPHI

The first seven rules of the PHI routine deal with
terms $1/ADJN that do not occur within a relative
clause or prepositional phrase. Such terms are re-
placed by terms p/.n (n less than 500) regardless of
which analysis the program is in. The rules “PHI02”
through "RCIV" deal with any relative clauses and prep-
ositional phrases that the formula may contain. The
treatment of such sequences does depend on the par-
ticular analysis that the program is in. In Analysis II,
all the words in a relative clause (minus the relative
pronoun) or prepositional phrase are compressed to
form a single term, which is subscripted with /VPOS.
If the relative clause is negative, the $1/VPOS is fol-
lowed by NOT.) The new term thus formed is replaced
by a term p/.n (or P/.n,NOT), denoting a unary predi-
cate. Thus, the relative clause 'who climb the hill' be-
comes CLIMBTHEHILL/VPOS, and the prepositional
phrase 'in the house' becomes INTHEHOUSE/VPOS, and
the resulting terms are looked up on Shelf 17 in order
to determine the P's that should replace them. Analy-
ses III and IV may be treated together at this point in
the program, since the analysis of definite descriptions,
which is the only respect in which they differ, was per-
formed at an earlier stage. Analyses III and IV treat
relative clauses and prepositional phrases essentially as
propositional functions; that is, a relative clause like
'who climb the hill' (whose parsed form is RCL*2 +
WHO/RELPR + VP*0 + V + CLIMB/VPOS + NP +
NP*1 + THE/DET + NP*0 + ADJNCL + HILL/ADJN) is
converted into '*X climb the hill' (i.e., *X + VP*0 + V +
CLIMB/VPOS + NP + NP*1 + THE/DET + NP*0 +
ADJNCL + HILL/ADJN), and its quasi-logical form is de-
termined from SFORM. Likewise, a prepositional phrase
like 'in the house' (whose parsed form is PPCL*2 +
IN/PREP + NP + NP*1 + THE/DET + NP*0 + ADJNCL
— HOUSE/ADJN) is converted into '*X in the house'

(i.e., *X + VP*0 + V + IN/VPOS + NP + NP*1 +
THE/DET + NP*0 + ADJNCL + HOUSE/ADJN), and its
quasi-logical form is also determined from SFORM.
The initial preposition of a prepositional phrase is sub-
scripted with /VPOS so that the SFORM routine will in-
terpret it as a binary relation. This device avoids the
necessity of adding to SFORM, a special set of rules
dealing with prepositions and is purely a matter of pro-
gramming convenience. The term '*X', which is used
in the analysis of relative clauses and prepositional
phrases, is replaced, as soon as the PHI under analysis
has been completely translated, by a term 'X' bearing
the same literal subscript as the PHI. The part of the
routine following the rule “RCIV” is not strictly speak-
ing part of the PHI routine, but is concerned with set-
ting up Shelf 13, and with substituting the part of the
formula that has just been translated in the appropriate
places in the main formula.

The program has successfully translated and proven
a number of examples from I. M. Copi's Introduction
to Logic and Symbolic Logic, and we present them be-
low in summary form. Most of the examples (with the
exception of “CIRCLE”) required a certain amount of
pre-editing in order to make their sentences conform to
the restrictions imposed by the program's grammar;
for these examples we present the original version
along with the pre-edited one, so that the reader may
have an idea of the sort of rewording and paraphrasing
that is necessary. For each example, the analysis that
was chosen by the selection criterion as the basis of
the proof is denoted by an asterisk.

DULUTH

If I buy a new car this spring or have my old car fixed,
then I'll get up to Canada this summer and stop off in
Duluth. I'll visit my parents if I stop off in Duluth. If
I visit my parents they'll insist upon my spending the
summer with them. If they insist upon my spending the
summer with them I'll be there till autumn. But if I
stay there till autumn then I won't get to Canada after
all! So I won't have my old car fixed.9

Pre-edited version:

If I buy a new car or fix my old car then I'll get to
Canada and stop in Duluth. If I stop in Duluth then
I'll visit my parents. If I visit my parents then I'll stay
in Duluth but if I stay in Duluth then I'll not get to
Canada. Therefore I'll not fix my old car.

* Analysis I:
(((A/V) OR (B/V)) IMPLIES ((C/V) AND (D/V))) . ((D/V)
IMPLIES (F/V)) . (((F/V) IMPLIES (H/V)) AND ((H/V)
IMPLIES (C/V.NOT))) . THEREFORE (B/V,NOT) .

Prenex version of selected formula:

((((((A)OR(B))IMPLIES((C)AND(D)))AND((D)IMPLIES

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 57

(F)))AND(((F)IMPLIES(H))AND((H)IMPLIES(NOT(C)))))
IMPLIES(NOT(B)))

Lexicon:

A/V = I buy some new car.
B/V = I fix my old car.
C/V = I getto Canada.
D/V = I stopin Duluth.
F/V = I visit my parents.
H/v = I stayin Duluth.

KELLY

Whoever supports Ickes will vote for Jones. Anderson
will vote for no one but a friend of Harris. No friend of
Kelly has Jones for a friend. Therefore, if Harris is a
friend of Kelly, Anderson will not support Ickes.8

Pre-edited version:

All who support Ickes will vote for Jones. Everyone
whom Anderson will vote for is a friend of Harris. Jones
is a friend of no one who is a friend of Kelly. Harris is
a friend of Kelly. Therefore Anderson will not support
Ickes.

Analysis I:

A/V. B/V. C/V. D/V. THEREFORE E/V.

Analysis II:
(A/Q X/A)((P/.3,A) IMPLIES (P/.2,A)) . (A/Q X/D) ((P/.5,D)
IMPLIES (P/.4,D)) . (P/.6 IND/.0) . (P/.7 IND/.2) . THERE–
FORE (NOT(P/.3) IND/.3) .

* Analysis III:
(A/Q X/B)((P/.501 X/B IND/.L) IMPLIES (P/.500 X/B IND/.0))
. (A/Q X/E)((P/.500 IND/.3 X/E) IMPLIES (P/.502 X/E
IND/.2)) . (A/Q X/G)((P/.502 X/G IND/.4) IMPLIES
(NOT(P/.502 IND/.0 X/G))) . (P/.502 IND/.2 IND/.4) .THERE–
FORE (NOT(P/.501 IND/.3 IND/.1)) .

Analysis IV:
(A/Q X/C)((P/.501 X/C IND/.1) IMPLIES (P/.500 X/C IND/.0))
. (A/Q X/F)((P/.500 IND/.3 X/F) IMPLIES (P/.502 X/F
IND/.2)) . (A/Q X/H)((P/.502 X/H IND/.4) IMPLIES
(NOT(P/.502 IND/.0 X/H))) . (P/.502 IND/.2 IND/.4) .
THEREFORE (NOT(P/.501 IND/.3 IND/.1)).

Prenex form of selected formula:
(E/Q X/B)(E/Q X/E)(E/Q X/G) ((((((P/.501 X/B IND/.1)
IMPLIES (P/.500 X/B IND/.0)) AND ((P/.500 IND/.3 X/E)
IMPLIES (P/.502 X/E IND/.2))) AND ((P/.502 X/G IND/.4)
IMPLIES (NOT(P/.502 IND/.0 X/G)))) AND (P/.502 IND/.2
IND/.4)) IMPLIES (NOT(P/.501 IND/.3 IND/.1)))

Lexicon:

A/V = All one who support Ickes votefor Jones.
B/V = All one whom Anderson votefor friendof Harris
C/V = Jones friendof no one who friendof Kelly.
D/V = Harris friendof Kelly.
E/V = Anderson support not Ickes.
IND/.4 + KELLY + IND/.3 + ANDERSON + IND/.2 + HARRIS
+ IND/.L + ICKES + IND/.0 JONES
P/.7 + FRIENDOFKELLY + P/.6 + FRIENDOFNOONEWHO
FRIENDOFKELLY + P/.5 + ANDERSONVOTEFOR + P/.4 +
FRIENDOFHARRIS + P/.3 + SUPPORTICKES + P/.2 + VOTE
FORJONES
P/.502 + FRIENDOF + P/.501 + SUPPORT + P/.500 +
VOTEFOR

CIRCLE

All circles are figures. Therefore all who draw circle
draw figures.2

Analysis I:

A/V. THEREFORE B/V.

Analysis II:
(A/Q X/A)((P/.2,A) IMPLIES (P/.3,A)) . THEREFORE (A/Q
X/D)((P/.5,D) IMPLIES (P/.4.D)) .

Analysis III:
(A/Q X/B)((P/.2,B) IMPLIES (P/.3,B)) . THEREFORE (A/Q
X/E)((E/Q X/G)((P/.2,G) AND (P/.500 X/E X/G)) IMPLIES
(E/Q X/F)((P/.3,F) AND (P/.500 X/E X/F)))

*Analysis IV:
(A/Q X/C)((P/.2,C) IMPLIES (P/.3,C)) . THEREFORE (A/Q
X/H)((E/Q X/J)((P/.2,J) AND (P/.500 X/H X/J)) IMPLIES
(E/Q X/I)((P/.3,I) AND (P/.500 X/H X/I)))

Prenex form of selected formula:
(E/Q X/C) (A/Q X/H) (A/Q X/J) (E/Q X/I) (((P/.2,C) IMPLIES
(P/.3,C)) IMPLIES (((P/.2,J) AND (P/.500 X/H X/J)) IMPLIES
((P/.3,I) AND (P/.500 X/H X/I))))

Lexicon:

A/V = All circle is some figure.
B/V = All who draw some circle draw some figure.
P/.5 + DRAWSOMECIRCLE + P/.4 + DRAWSOMEFIGURE +
P/.3 + FIGURE + P/.2 + CIRCLE

P/.500 + DRAW

PROFESSOR

There is a professor who is liked by every student
who likes any professor at all. Every student likes

58 DARLINGTON

some professor or other. Therefore there is a professor
who is liked by all students.13

Pre-edited version:

There is a professor whom every student who likes
some professor likes. Every student likes some profes-
sor. Therefore there is a professor that all students like.

Analysis I:

A/V. B/V. THEREFORE C/V.

Analysis II:
(E/Q X/A)((P/.2,A) AND (P/.3,A)) . (A/Q X/H) ((P/.4,H)
IMPLIES (P/.5,H)) . THEREFORE (E/Q X/M) ((P/.2,M) AND
P/.6,M)) .

*Analysis III:
(E/Q X/B)((P/.2,B) AND (A/Q X/C) (((P/.4,C) AND E/Q
X/D)((P/.2,D) AND (P/.500 X/C X/D))) IMPLIES (P/.500 X/C
X/B))) . (A/Q X/I)((P/.4,I) IMPLIES (E/Q X/J) ((P/.2,J) AND
(P/.500 X/I X/J))) . THEREFORE (E/Q X/N) ((P/.2,N) AND
(A/Q X/O)((P/.4,O) IMPLIES (P/.500 X/O X/N))) .

Analysis IV:
(E/Q X/E)((P/.2,E) AND (A/Q X/F) (((P/.4,F) AND (E/Q

X/G)((P/.2,G) AND (P/.500 X/F X/G))) IMPLIES (P/.500 X/F
X/E))) . (A/Q X/K)((P/.4,K) IMPLIES (E/Q X/L) ((P/.2,L)
AND (P/.500 X/K X/L))) . THEREFORE (E/Q X/P) ((P/.2,P)
AND (A/Q X/Q)((P/.4,Q) IMPLIES (P/.500 X/Q X/P))) .

Prenex form of selected formula:
(A/Q X/B)(E/Q X/C) (E/Q X/D) (E/Q X/I) (A/Q X/J) (E/Q
X/N) (A/Q X/O)((((P/.2,B) AND (((P/.4,C) AND ((P/.2,D)
AND (P/.500 X/C X/D))) IMPLIES (P/.500 X/C X/B))) AND
((P. .4,I) IMPLIES ((P/.2,J) AND (P/.500 X/I X/J)))) IMPLIES
((P .2,N) AND ((P/.4,O) IMPLIES (P/.500 X/O X/N))))

Lexicon:

A/V = Some one is some professor whom all student
who like some professor like.

B/V = All student like some professor.
C/V = Some one is some professor that all student

like.
P/.6 – ALLSTUDENTLIKE + P/.5 + LIKESOMEPROFESSOR +
P/.4 + STUDENT + P/.3 + ALLSTUDENTWHOLIKESOMEPRO-
FESSORLIKE + P/.2 + PROFESSOR

P/.500 + LIKE

RED
It is a crime to sell an unregistered gun to anyone. All
the weapons that Red owns were purchased by him
from either Lefty or Moe. So if one of Red's weapons

is an unregistered gun, then if Red never bought any-
thing from Moe, Lefty is a criminal.14

Pre-edited version:

Everyone who sells an unregistered gun to someone
is a criminal. Lefty sold all the weapons that Red owns
to Red. Red owns a weapon that is an unregistered
gun. Therefore Lefty is a criminal.

Analysis I:

A/V. B/V. C/V. THEREFORE D/V.

Analysis II:
(A/Q X/A)((P/.2,A) IMPLIES (P/.3,A)) . (P/.6 IND/.0) . (P/.8
IND/.1) . THEREFORE (P/.3 IND/.0) .

* Analysis III:
(A/Q X/B) ((E/Q X/C)(((P/.4,C) AND (P/.5,C)) AND (E/Q
X/D)(P/.500 X/B X/C X/D)) IMPLIES (P/.3,B)) . (A/Q
X/H) (((P/.7,H) AND (P/.501 IND/.L X/H)) IMPLIES (P/.500
IND/.0 X/H IND/.1)) . (E/Q X/J) (((P/.7, J) AND ((P/.4,J)
AND (P/.5,J))) AND (P/.501 IND/.1 X/J)) . THEREFORE (P/.3
IND/.0) .

Analysis IV:
(A/Q X/E)((E/Q X/F)(((P/.4,F) AND (P/.5,F)) AND (E/Q
X/G)(P/.500 X/E X/F X/G)) IMPLIES (P/.3,E)) . (A/Q
X/I)(((P/.7,I) AND (P/.501 IND/.1 X/I)) IMPLIES (P/.500
IND/.0 X/I IND/.1)) . (E/Q X/K) (((P/.7,K) AND ((P/.4,K)
AND (P/.5,K))) AND (P/.501 IND/.1 X/K)) . THEREFORE
(P/.3 IND/.0) .

Prenex form of selected formula:
(E/Q X/B) (E/Q X/C) (E/Q X/D) (E/Q X/H) (A/Q X/J)
(((((((P/.4,C) AND (P/.5,C)) AND (P/.500 X/B X/C X/D))
IMPLIES (P/.3,B)) AND (((P/.7,H) AND (P/.501 IND/.1 X/H))
IMPLIES (P/.500 IND/.0 X/H IND/.1))) AND (((P/.7,J) AND
((P/.4,J) AND (P/.5,J))) AND (P/.501 IND/.L X/J))) IMPLIES
(P/.3 IND/.0))

Lexicon:

A/V = All one who sell some unregistered gun to
some one is some criminal.

B/V = Lefty sell all weapon that Red own to Red.
C/V = Red own some weapon that is some unregis-

tered gun.
D/V = Lefty is some criminal.
IND/.1 + RED + IND/.0 + LEFTY
P/.8+ OWNSOMEWEAPONTHATISSOMEUNREGISTEREDGUN +
P/.7 + WEAPON + P/.6 + SELLALLWEAPONTHATREDOWN–
TORED + P/.5 + GUN + P/.4 + UNREGISTERED + P/.3 +
CRIMINAL + P/.2 + SELLSOMEUNREGISTEREDGUNTOSOME-
ONE

P/.501 + OWN + P/.500 + SELLTO

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 59

DESK

Everything on my desk is a masterpiece. Anyone who
writes a masterpiece is a genius. Someone very obscure
wrote some of the novels on my desk. Therefore some-
one very obscure is a genius.15

Pre-edited version:

Everything on my desk is a masterpiece. Everyone
who writes a masterpiece is a genius. Some obscure
one wrote some of the novels on my desk. Therefore
some obscure one is a genius.

Analysis I:

A/V. B/V. C/V. THEREFORE D/V.

Analysis II:
(A/Q X/A)((P/.2,A) IMPLIES (P/.3,A)) . (A/Q X/F) ((P/.6,F)
IMPLIES (P/.7,F)) . (E/Q X/K) ((P/.9,K) AND (P/.8,K)) .
THEREFORE (E/Q X/R) ((P/.9,R) AND (P/.7,R)) .

*Analysis III:
(A/Q X/B)((E/Q X/C)(((P/.4,C) AND (P/.5,C)) AND (P/.500
X/B X/C)) IMPLIES (P/.3,B)) . (A/Q X/G)((E/Q X/H) ((P/.3,H)
AND (P/.501 X/G X/H)) IMPLIES (P/.7,G)) . (E/Q X/L)
((P/.9,L) AND (E/Q X/M) (((P/.10,M) AND (E/Q X/N)
(((P/.4,N) AND (P/.5,N)) AND (P/.500 X/M X/N))) AND
(P/.501 X/L X/M))) . THEREFORE (E/Q X/S) ((P/.9,S) AND
(P/.7,S)) .

Analysis IV:
(A/Q X/D)((E/Q X/E)(((P/.4,E) AND (P/.5,E)) AND (P/.500
X/D X/E)) IMPLIES (P/.3,D)) . (A/Q X/I)((E/Q X/J) ((P/.3,J)
AND (P/.501 X/I X/J) IMPLIES (P/.7,I)) . (E/Q X/O) ((P/.9,O)
AND (E/Q X/P)(((P/.10,P) AND (E/Q X/Q) (((P/.4,Q) AND
(P/.5,Q)) AND (P/.500 X/P X/Q))) AND (P/.501 X/O X/P))) .
THEREFORE (E/Q X/T) ((P/.9,T) AND (P/.7,T)) .

Prenex form of selected formula:
(E/Q X/B) (E/Q X/C) (E/Q X/G) (E/Q X/H) (A/Q X/L) (A/Q
X/M) (A/Q X/N) (E/Q X/S) (((((((P/.4,C) AND (P/.5,C)) AND
(P/.500 X/B X/C)) IMPLIES (P/.3,B)) AND (((P/.3,H) AND
(P/.501 X/G X/H)) IMPLIES (P/.7,G))) AND ((P/.9,L) AND
(((P/.10,M) AND (((P/.4,N) AND (P/.5,N)) AND (P/.500 X/M
X/N))) AND (P/.501 X/L X/M)))) IMPLIES ((P/.9,S) AND
(P/.7,S)))

Lexicon:

A/V = All one on my desk is some masterpiece.
B/V = All one who write some masterpiece is some

genius.
C/V = Some obscure one write some novel on my

desk.

D/V = Some obscure one is some genius.

P/.10 + NOVEL + P/.9 + OBSCURE + P/.8 + WRITESOME–
NOVELONSOMEMYDESK + P/.7 + GENIUS + P/.6 + WRITE–
SOMEMASTERPIECE + P/.5 + DESK + P/.4 + MY + P/.3 +
MASTERPIECE + P/.2 + ONSOMEMYDESK

P/.501 + WRITE + P/.500 + ON

TAPPAN

The architect who designed Tappan Hall designs only
office buildings. Therefore Tappan Hall is an office
building.16

Pre-edited version:

The architect who designed Tappan-Hall designs only
office-buildings. Therefore Tappan-Hall is an office-
building.

Analysis I:

A/V. THEREFORE B/V.

Analysis II:

(P/.2 IND/.0) . THEREFORE (P/.3 IND/.1) .

Analysis III:
(A/Q X/A)((P/.500 IND/.0 X/A) IMPLIES (P/.3,A) . THERE–
FORE (P/.3 IND/.1) .

*Analysis IV:

(E/Q X/B) (((P/.4,B) AND (P/.500 X/B IND/.L)) AND (A/Q
X/D)((((P/.4,D) AND (P/.500 X/D IND/.L)) IMPLIES (* =
X/B X/D)) AND (A/Q X/C)((P/.500 X/B X/C) IMPLIES
(P/.3,C)))) .THEREFORE (P/.3 IND/.1) .

Prenex form of selected formula:

(A/Q X/B) (E/Q X/D) (E/Q X/C) ((((P/.4,B) AND (P/.500 X/B
IND/.1)) AND ((((P/.4,D) AND (P/.500 X/D IND/.1))
IMPLIES (*= X/B X/D)) AND ((P/.500 X/B X/C) IMPLIES
(P/.3,C)))) IMPLIES (P/.3 IND/..1)) .

Lexicon:

A/V = The architect who design Tappan-Hall design
only office-building.

B/V = Tappan-Hall is some office-building.

IND/.1 + TAPPAN-HALL + IND/.0 +
THEARCHITECTWHODESIGNTAPPAN-HALL
P/.4 + ARCHITECT + P/.3 + OFFICE-BUILDING + P/.2 +
DESIGNONLYOFFICE-BUILDING

P/.500 + DESIGN

60 DARLINGTON

The running times in seconds for the preceding ex-
amples are listed below.

Example DA DB DC Total
(parsing) (translation) (proof) time

Duluth 63 — — 63
Kelly 68 22 11 101
Circle 163 9 7 179
Professor 162 15 39 216
Red 244 16 30 290
Desk 133 32 39 204
Tappan 43 7 10 60

The reason for the blanks in Sections DB and DC of
DULUTH is that the argument was parsed, translated,
and proven in Section DA. The parsing and translation
took 58 seconds, and the proof by the Wang algorithm
took 5 seconds. For all the problems, it will be noted
that the parsing consumed by far the greatest amount
of time. A more efficient parsing system, therefore, is
essential if the program is to become a really practical
tool for logical analysis. A running time of five or six
minutes is intolerable for two reasons: (1) at a peak
hour of time-sharing usage, this amount of machine
time is apt to consume twenty or thirty minutes of ac-
tual time at the console, and (2) the time allotments
for most MAC users have recently been reduced to
twenty or thirty minutes per shift per month (the
above data, fortunately, were obtained before the re-
duced quotas were assigned). The large amount of
time consumed by DA, however, is part of the price one
pays for permitting syntactic homonymy and amphib-
oly. An earlier version of the program parsed the in-
put sentences far more rapidly, but it required that
each word be assigned a unique syntactic category in
an a priori fashion, and its grammar was considerably
more simplified in other respects than that employed
by the present version of the program.

Three sentences of the input arguments were found
to be amphibolous, and the choice of parsing was made
by the operator at the console. In the CIRCLE example,
the sentence 'All who draw circles draw figures' was
transformed into 'All who draw circle draw figure',
which admitted of two nonsentential and five sentential
parsings, i.e.,

SNOVP + NP + NP*1 + ALL/DET + NP*0 + NP*2 +
ADJNCL + ONE/ADJN + RELCL + RCL*2 + WHO/RELPR
+ IVP + NP + NP*0 + ADJNCL + ACL*0 + DRAW/ADJN
+ ADJNCL + ACL*0 + CIRCLE/ADJN + ADJNCL +
DRAW/ADJN + V + FIGURE /VPOS + **/.1

SNOVP + NP + NP*1 + ALL/DET + NP*0 + NP*2 +
ADJNCL + ONE/ADJN + RELCL + RCL*2 + WHO/RELPR
+ VP*0 + V + DRAW/VPOS + NP + NP*0 + ADJNCL +
ACL*0 + CIRCLE/ADJN + ADJNCL + ACL*0 + DRAW/
ADJN + ADJNCL + FIGURE/ADJN + **/.2

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL +
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + IVP +
NP + NP*0 + ADJNCL + DRAW/ADJN + V + CIRCLE/
VPOS + VP*0 + V + DRAW/VPOS + NP + NP*0 +
ADJNCL + FIGURE/ADJN + **/.3
S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL
+ ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0
+ V + DRAW/VPOS + NP + NP*0 + ADJNCL + CIRCLE/
ADJN + VP*0 + V + DRAW/VPOS + NP + NP*0 +
ADJNCL + FIGURE/ADJN + **/.4
S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL +
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + V +
DRAW/VPOS + VP*0 + V + CIRCLE/VPOS + NP + NP*0
+ ADJNCL + ACL*0 + DRAW/ADJN + ADJNCL +
FIGURE/ADJN + **/.5
S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL
+ ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + IVP +
NP + NP*0 + ADJNCL + ACL*0 + DRAW/ADJN +
ADJNCL + CIRCLE/ADJN + V + DRAW/VPOS + V +
FIGURE/VPOS + **/.6

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL
+ ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0
+ V + DRAW/VPOS + NP + NP*0 + ADJNCL + ACL*0
+ CIRCLE/ADJN + ADJNCL + DRAW/ADJN + V +
FIGURE/VPOS + **/.7

The fourth analysis was selected by the operator, since
it is clearly necessary in this example to treat 'draw' as
a verb and 'circle' and 'figure' as nouns.

In the RED example, the sentence 'Everyone who
sells an unregistered gun to someone is a criminal' was
transformed into 'All one who sell some unregistered
gun to some one is some criminal', which admitted of
two sentential parsings, i.e.,

S + NP + NP*L + ALL/DET + NP*0 + NP*2 + ADJNCL +
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*1 +
VP*0 + V + SELL/VPOS + NP + NP*1 + SOME/DET +
NP*0 + ADJNCL + ACL*0 + UNREGISTERED/ADJN +
ADJNCL + GUN/ADJN + PPCL + PPCL*2 + TO/PREP +
NP + NP*1 + SOME/DET + NP*0 + ADJNCL + ONE/ADJN
+ VP*0 + V + IS/VPOS + NP + NP*1 + SOME/DET +
NP*0 + ADJNCL + CRIMINAL/ADJN – **/.1

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL +
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0 +
V + SELL/VPOS + NP + NP*1 + SOME/DET + NP*0 +
NP*2 + ADJNCL + ACL*0 + UNREGISTERED/ADJN +
ADJNCL + GUN/ADJN + PPCL + PPCL*2 + TO/PREP +
NP + NP*1 + SOME/DET + NP*0 + ADJNCL + ONE/ADJN
+ VP*0 + V + IS/VPOS + NP + NP*1 + SOME/DET +
NP*0 + ADJNCL + CRIMINAL/ADJN + **/.2

The first analysis was selected by the operator, since
it links the prepositional phrase 'to someone' with 'sell'
rather than with 'gun'.

In the DESK example, the sentence 'Some obscure one
wrote some of the novels on my desk' was transformed

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 61

into 'Some obscure one write some novel on my desk',
which admitted of two sentential parsings, i.e.,

S + NP + NP*1 + SOME/DET + NP*0 + ADJNCL + ACL*0
+ OBSCURE/ADJN + ADJNCL + ONE/ADJN + VP*1 +
VP*0 + V + WRITE/VPOS + NP + NP*1 + SOME/DET +
NP*0 + ADJNCL + NOVEL/ADJN + PPCL + PPCL*2 +
ON/PREP + NP + NP*0 + ADJNCL + ACL*0 + MY/ADJN
+ ADJNCL + DESK/ADJN + **/.1

S + NP + NP*1 + SOME/DET + NP*0 + ADJNCL +
ACL*0 + OBSCURE/ADJN + ADJNCL + ONE/ADJN + VP*0
+ V + WRITE/VPOS + NP + NP*1 + SOME/DET + NP*0
+ NP*2 + ADJNCL + NOVEL/ADJN + ACL*0 + MY/ADJN
+ ADJNCL + ACL*0 + MY/ADJN + ADJNCL + DESK/ADJN
+ **/.2

This example is analogous to the preceding one, in that
the amphiboly results from the question of whether a
prepositional phrase should be linked with a directly
preceding noun or with a verb occurring earlier on in
the sentence. In this case, however, the second analy-
sis was selected, since the operator knew that the
prepositional phrase 'on my desk should be linked with
'novel' rather than with 'write'. It could be argued that
the amphibolies of the first two examples are some-
what artificial, in that they result merely from the
limited nature of the grammar and do not really per-
tain to the original English sentences. In the third
example, however, the amphiboly appears to be more
genuine, since it is quite possible that the sentence
could be referring to novels being written on my desk.
In the next section, we shall discuss the logical eval-
uation part of the program.

Methods of Logical Evaluation

As pointed out earlier, the propositional logic formula
produced by the program are tested by the Wang
algorithm, which is included in Section DA, and the
functional logic formulae are proven in Section DC by
a method based on the one-literal clause rule of Davis-
Putnam and the matching algorithm of Guard. Our
COMIT version of the Wang algorithm is reproduced
below.

THE WANG PROPOSITIONAL LOGIC ALGORITHM

COM WANG
RCR $=–*.–TYPE–IN–FORMULA*. //*WAL1 *
* $//*RCR1 *
**.=0 *
* $ + *–+$ //*Q9 1 2 3 SUB
* $ = *–+1 //*Q9 1 2 *
SUB $//*N9 1 *
* $1 //*L1 SUB1
* $//*A2 1 COM
–SUB1 B = 1/ZB,OP//*Q2 1 SUB
 C = 1/ZC,OP//*Q2 1 SUB
 D=1/ZD,OP//*Q2 1 SUB

F = 1/ZF,OP //*Q2 1 SUB
I = 1/ZI,OP //*Q2 1 SUB
* – = //*Q2 1 SUB
, = 1/OP //*Q2 1 SUB

* $1 = 1/V //*Q2 1 SUB
WFF $1 + $ + *–+$ =1+2+3+4+–/WFF1+ –/S3 //*Q8 1 2,–
*Q6 3 4,*S10 5 6 SCOPE
* WFF2
WFF1 $ = X + X //*A7 1,*A6 2 *
WFF2 $+*–+$1+$=1+2+3+4+ –/WFF3+ –/S3 //*Q6 1 2,–
*Q8 3 4,*S10 5 6 SCOPE
* COM2
WFF3 $ = X + X //*A6 1,*A7 2 COM2
SCOPE $ = M/.L //*S7 1 *
* $//*N8 1 *
* F = //*Q7 1 S1
* $1/OP //*Q7 1,*N7 1 S4
* $1/V //*Q7 1,*N7 1 S2
* $=–*–THE–FORMULA –IS– DEFECTIVE – THERE – ARE –
* TOO–MANY–OPERATORS*.//*WAL1,*A7 1,*WSL1 END
S2 $1 = 1/.D1 *
* $1/.G0 //*S7 1 S1
* $//*N10 1 $
S3 $//*A8 1 *
* $1 + $=–*– THE –FORMULA– IS – DEFECTIVE – THERE –
– ARE – TOO – MANY – VARIABLES*. + 1 + 2 //*WAL1,–
*WSL2 3 END
* $//*N10 1 $
S4 $1 = 1/.I1 //*S7 1 S1
COM $ + , + $ + *– //*Q2 2 COM
* $ + *– //*Q2 1 2 *
COM1 $ + ,//*Q2 2 COM1
* $//*Q2 1,*A2 1 WFF
COM2 $ + ,= 1 //*Q2 1 COM2
* $//*Q2 1,*A2 1 TEST
TEST $ = *.–+1 + 1 //*WAL1 2 *
* $ + $1/OP+$=1+2+2+ 3+ –/PAREN //*Q7 1 2,*S10 3 5,–
*Q8 4 SCOPE
P1 $1+ $ + *–+$ + 1 VALID
* $1 + $ + *–//*Q7 1 P1
* $=X+1 //*A7 1 *
* $=–*. –FORMULA– IS –INVALID*. //*WAL1 END
VALID $ = X+1 //*A7 1 *
* $= – *. –VALID*. //*WAL1,*A9 1 *
* $1 + $ + ** + $ = L + 2 + 4//*S9 3 TEST
* $=–*.–FORMULA–IS–VALID*.//*WAL1 END
PAREN $ = *) //*Q7 1,*N10 1 *
* F=1 + X + X//*A7 2,*A8 3 $
* $=–/PAREN1 + L //*S10 2 1 SCOPE
PAREN1 $ = X + X+*) + X //*N10 1,*A7 2,*A8 4 $
ZF $1 = 0 *
P2A $ + * –+$ + F + *) = 5 +1 + 2 + 3 TEST
P2B F+$ + *) + $ + *–+$=4 + 5 + 6 + 2 TEST
ZC $1 = 0 *
P3A $ +*–+$+C+$+*)+$+*)+$=1+2+3+5+9+1+2+ 3 + –
7 + 9+**//*S9 11 10 9 8 7 6 TEST
P3BC + $ + *) + $ + *) = 2 + 4 TEST

62 DARLINGTON

ZD $1 = 0 *
P4A *–+$ + D + $ + *) + $+*) = 1 + 2 + 4 + 6 TEST
P4B $+D+$+*) + $ + *) +$+*–+$=L+3+7+8+9+L+5+7+–
8+9 + ** //*S9 11 10 9 8 7 6 TEST
ZI $1 = 0 *
P5A $ +*–+$+1+$+*)+$+*)+ $=1+5+ 2+3 + 7 + 9 TEST
P5B $ +1+$+*)+$+*)+$+*–+$ =1+5+7+8+9+1+7+ 8 + –
9+3 + **//*S9 11 10 9 8 7 6 TEST
ZB S1=0 *
P6A $+*–+$+B+$+*)+$+*)+$=5+1+2+3+7+ 9 + 7+1 + –
2+3+5+9+** //*S9 13 12 11 10 9 8 7 TEST
P6B $+ B+$+*)+$+*)+$+*–+$=3+5+1+7+8+9+1 + 7 + –
8+9 + 3 + 5 + ** //*S9 13 12 11 10 9 8 7 TEST
END *

END

At the start of the program, the operator types
in a formula in the required Polish notation, e.g.,
'ICTPFQBPQ'. The COMIT input mode "format c" that
the program employs then expands the formula, adding
a '*.' at the end; the sample formula thereby becomes
'I — C+F + P + F + Q + B + P + Q + *.'. The
program then deletes the final '*.', adds a '*—' at the
left of the workspace if the formula does not already
contain this symbol, and provides the individual sym-
bols with appropriate subscripts. The letters 'B', 'c',
'D', 'F', and 'I', which stand for 'iff', 'and', 'or', 'not',
and 'implies', respectively, are regarded as operators
and given the subscript '/OP', in addition to a distinc-
tive subscript ('/ZB', '/ZC', etc.) whose use is ex-
plained below. The comma, which is also subscripted
with ' OP', is used by Wang in the following way: if it
appears on the left of the dash it signifies the conjunc-
tion of the two well-formed formulae (wffs) between
which it occurs, and if it appears on the right of the
dash it signifies the disjunction of the two wffs. The
dash itself expresses implication or entailment; the
Winer algorithm requires every formula to contain ex-
actlv one dash, and thus treats every formula as an
implication (a dash can always be placed at the far
left of a formula that initially contains no dash with-
out affecting validity). Any symbols in the input for-
mula other than the dash and the operators are re-
garded as variables and subscripted with '/v' (the
period or dot, which Wang uses to partially parenthe-
size the input formulae, is not required by our program
and is not included). The formula is next tested for
wellformedness by a series of rules that reject a formula
if it contains too many or too few variables in relation
to the number of operators, or if the variables and
operators occur in an illegitimate order. Any commas
are then deleted, and the program proceeds to the test
of validity proper.

The validity test is based on a set of ten rules (i.e.,
P2A, P2B, P3A, P3B, P4A, P4S, P5A, P5B, P6A, and P6B)
for the elimination of operators, and one rule (i.e., p1)
for the testing of a formula all of whose operators have
hem eliminated. These eleven rules are named in our

program after the corresponding rules in Wang's state-
ment of his algorithm. The program finds the leftmost
operator in the formula, and eliminates it by whichever
of the rules P2A-P6B is appropriate. At this point, the
program exploits the “$ go-to” feature of COMIT in
order to go directly to the section of the program that
eliminates the leftmost operator. For example, if the
operator is C/ZC,OP the program goes to rule zc, and
thence directly to rule P3A (which eliminates C if it
occurs to the right of the dash) or, if P3A is inapplica-
ble, to rule P3B (which eliminates c if it occurs to the
left of the dash). Certain of these elimination rules
(e.g., P3A) create new branches of the formula, which
are separated by double asterisks and stored on Shelf
9. After all the operators have been eliminated from
the formula in the workspace, the test of validity em-
bodied in rule P1 and its directly following rule is ap-
plied: if any propositional letter on the left of the dash
is repeated on the right, the formula (specifically, the
branch in the workspace) is valid; if not, the formula
is invalid. This test is based on the fact that a state-
ment of implicational form, whose antecedent is a con-
junction of atomic wffs and whose consequent is a
disjunction of atomic wffs, is tautologous if and only
if at least one of the atomic wffs of the antecedent is
repeated in the consequent; e.g., the formula

(P AND Q AND R) IMPLIES (P OR S OR T)
is a tautology, but

(P AND Q AND R) IMPLIES (U OR S OR T)

is not. (This test of validity bears a superficial resem-
blance to our selection criterion for deciding among
Analyses I, II, III, and IV of an argument, which is
based on repetition of terms between premisses and
conclusion. We daren't press the analogy too far, how-
ever, since our criterion is not a conclusive test of valid-
ity but merely establishes prima facie evidence of
validity.) The procedure of eliminating operators and
testing for repetition continues until an invalid branch
is found, in which case the formula is invalid, or until
all the branches are proved valid, in which case the
formula is valid.

The program described here exactly duplicates the
print-out from Wang's program on page 18 of his arti-
cle. Our running times range between 0.3 and 4.0 sec-
onds (exclusive of compilation) per formula. The pro-
gram was adapted for use in Section DA of our main
program, where it provides a quick and easy test of
validity for propositional logic formulae.

The functional logic evaluation program is an out-
growth of an earlier program embodying the Davis-
Putnam proof procedure algorithm. The present pro-
gram, like the Davis-Putnam algorithm, operates by
reductio ad absurdum: accepting an input formula "F"
in prenex form, it negates F, puts the matrix of not-F
into conjunctive normal form, replaces each existen-
tially qualified variable x in the matrix with a distinct

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 63

function of the universally quantified variables that
precede x in the string of quantifiers, and attempts to
deduce a contradiction from the resulting formula
not-F'. In attempting to deduce a contradiction from
not-F', the Davis-Putnam algorithm exploits the Her-
brand theorem, which provides an effective procedure
for making substitutions for the variables thereby gen-
erating quantifier-free substitution instances (QFSI),
and a corollary of which states that F is a theorem if
and only if a finite conjunction of QFSI generated from
not-F' is inconsistent. Our program, however, avoids
actually generating the QFSI in most cases, by employ-
ing the matching algorithm of Guard to test whether
two matrix clauses could possibly yield any contradic-
tory QFSI. The use of matching cuts down on the
amount of material necessary to produce a proof, and
results in a more efficient proof procedure program.
The revised program incorporating matching not only
proves theorems that the earlier program was unable
to prove because of limitations of time and storage,
but also reduces the computation time (in some cases
by a factor of 10) for many theorems that the earlier
program was able to prove. The matching algorithm is
formulated by its author as follows:

“Definition: The following algorithm which is to be
applied to two atomic wffs B and C ... is called match-
ing.

Step 1: Consider B and C as being stored at lines (1)
and (2) respectively. Reletter the variables of line (2)
so that it has no variables in common with line (1).

Step 2: Let us denote the n-th symbol—ignoring par-
entheses and commas—of line (1) by (l)n. Similarly
we define (2)n.

Case a): If lines (1) and (2) are identical, the algo-
rithm outputs (1) and stops.

Case b): Suppose n is the smallest integer such that
(l)n is different from (2)n. Since wffs are involved
and case a) does not hold, neither (l)n or (2)n can
be vacuous. We consider four subcases:

i) Suppose (2)n is a variable, say X, while (l)n is
a function or individual constant. Then call D the
unique subformula of (1), starting at (l)n. If D
contains x, output does not match, and stop. If D
does contain X, substitute D for X everywhere in
(1) and (2). Go back and repeat Step 2.

ii) Proceed as in i) if the roles of (1) and (2) are
interchanged.

iii) If (l)n and (2)n are different variables, replace
(2)n everywhere in (1) and (2) by (l)n.

iv) If (l)n and (2)n are different constants, out-
put does not match and stop.”17

An illustrative example that the author gives is the
application of the matching algorithm to the following
two clauses:

P(G(G(X,G(Y,X)),Z))
P(G(G(X,Y),G(X,X)))

These clauses turn out to have the formula

P(G(G(x,G(y,x)), G(x,x)))

as a “general matching formula,” i.e., a QFSI common
to both clauses and from which all other common QFSI
can be generated (finding a general matching formula
for two clauses is equivalent to proving that the two
“match”). Two clauses that do not match are the fol-
lowing:

Q(X,X)
Q(Y,H(Y))

These violate Rule i) of the algorithm, since the sub-
formula H(X), which the algorithm generates, contains
x.

In our partial reconstruction of the Davis-Putnam
algorithm, we have applied the matching algorithm in
two ways:

(1) to test whether two one-literal clauses (atomic
wffs) would generate contradictory QFSI, thereby prov-
ing the formula inconsistent; and

(2) to generate from a one-literal clause and a poly-
literal clause of length n, one or more clauses of length
n—1. I

Both (1) and (2) make use of what might be called
“negative matching,” where two formulae are said to
match negatively, or to “N-match,” if and only if one
matches the negation of the other. An example of (1)
would be the two one-literal clauses

F(X,Y) and not-F(P(X,Y),P(X,Y))

which generate an infinite number of contradictor]
QFSI, e.g.,

F(P(a,a),p(a,a)) and not-F(P(a,a),P(a,a)).

An example of (2) would be the one-literal clause

F(y,P(x,y))

and the polyliteral clause

not-(F(x,y)) v G(y,x).

These two clauses together entail

G(P(x,y),y)
which is shorter by one literal than the original poly
literal clause, and which, as it turns out, is a one-literal
clause.

The latter example illustrates the following principle
which we may call DS', since it is essentially an exten-
sion of the principle of Disjunctive Syllogism, i.e., “A
and (not-A v B) entail B.”
DS': Given a one-literal clause A and a polyliteral
clause (B v R), where A and B N-match via the general
matching formula, if B is positive and equals M, or if
B is negative and equals M except for the negation

64 DARLINGTON

sign, then A and (B v R) entail R. If, however, neither
B nor its negation equal M, then A and (B v R) entail
R', where R' is formed from R by making the same sub-
stitutions in R that would have to be made in B (or its
negation) to make it equal M.

In the example used above to illustrate (2), the
one-literal clause

F(y,P(x,y))

and the first term of the polyliteral clause

not-F(x,y) v G(y,x)

N-match via the general matching formula

F(y,P(x,y)).

In order to get F(x,y) to equal the general matching
formula, it would be necessary to make the substitu-
tions

x = y and y = P(x,y)

in F(x,y). These substitutions must also be made in
the remainder of the polyliteral clause, i.e.,

G(y,x)

yielding the one-literal clause

G(P(x,y),y).

The general plan of our revised algorithm, then, is
to search for an N-match among the one-literal clauses,
thereby proving the formula inconsistent. The one-
iteral clauses are separated from the polyliteral clauses,
the former being stored on Shelf 6 and the latter on
Shelf 9. If there is no N-match among the one-literal
clauses on Shelf 6, then DS' is applied to the first
polyliteral clause on Shelf 9. If DS' can be applied, then
it produces one or more new clauses containing n-1
literals, where the original clause contained n literals.
If n-1 = 1, i.e., if the new clauses generated are one-
iteral clauses, then they are N-matched against the
existing one-literal clauses on Shelf 6, where an N-
Match proves the matrix inconsistent and the original
formula valid. If a new one-literal clause does not N-
Match the existing one-literal clauses, and if it is re-
dundant, then it is deleted, but if it is not redundant,
then it is stored at the front of Shelf 6, with the exist-
ing one-literal clauses. If n-1 is greater than 1, i.e., if
the new clauses generated are polyliteral clauses, then
they are stored at the front of Shelf 9 with the existing
polyliteral clauses, and the program again attempts to
apply DS' to the first polyliteral clause on Shelf 9. If,
however, the first polyliteral clause contains no terms
that N-match any of the one-literal clauses, then it is
stored on another shelf, i.e., Shelf 13, on which the
original polyliteral clauses as well as all the new poly-
literal clauses are stored. If and when the original list
of polyliteral clauses on Shelf 9 becomes exhausted
without resulting in a proof, and if one or more new

one-literal clauses have been generated in the course
of running through Shelf 9, then the polyliteral clauses
on Shelf 13 are transferred to Shelf 9, and the process
begins anew. If, however, no more one-literal clauses
were generated, or if there were no one-literal clauses
to start with, then the algorithm reverts to the older
method of generating QFSI and testing for consistency
after each generation. The earlier version of our pro-
gram used the Davis-Putnam algorithm for testing con-
junctions of QFSI for consistency; the present version,
however, uses only one of the three Davis-Putnam
rules, the so-called “one-literal clause rule,” which may
be defined as follows:
One-literal clause rule: If P is a one-literal clause (i.e ,
a conjunct containing no disjunction operators, and
which is therefore an atomic wff), then all conjuncts
containing P and all single occurrences of not-P are
deleted from C (it is assumed that all tautologous con-
juncts have been previously deleted from c, so that no
conjunct contains both P and not-P).

The one-literal clause rule is applied to a formula in
conjunctive normal form until all the one-literal clauses
(if any) are deleted or until two one-literal clauses are
found to be mutually inconsistent. Since the applica-
tion of the rule may produce new one-literal clauses,
it is necessary to test the one-literal clauses for con-
sistency after each application. The condition of in-
consistency is the occurrence of two contradictory one-
literal clauses, and the condition of consistency is the
deletion of the entire formula. The Davis-Putnam
algorithm contains two rules that are applied to the
formula in the event that the one-literal clause rule
fails to give a decision; our earlier program included
these two rules, but they have been omitted from the
present version of the program, partly because they
use up a lot of machine time, but mainly because they
are not guaranteed to return the program to the one-
literal clause rule, which is the most efficient of the
three rules. In place of the latter two Davis-Putnam
rules, therefore, we have substituted a branching fea-
ture, based on the method described in Quine's
Methods of Logic18. Whenever the one-literal clause
rule cannot be applied, the formula is split into two
branches, by finding the first term of the formula, as-
suming it first true and then false, and making appro-
priate cancellations. Letting P be the first term, the
first branch is produced by deleting entire conjuncts
containing P and individual occurrences of not-P; the
second branch is produced by deleting entire conjuncts
containing not-p and individual occurrences of P. The
second branch is stored at the front of a shelf, and the
first branch remains in the workspace where an at-
tempt is made to apply the one-literal clause rule to it.
If this attempt fails, the formula in the workspace is
split again in the same way, the first branch remaining
in the workspace and the second branch being stored
at the front of the shelf. This procedure continues until

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 65

a branch is obtained to which the one-literal clause
rule can be applied. The consistency test terminates
when one branch is proven consistent (i.e., is entirely
deleted), in which case the entire formula is consistent,
or when all branches are proven inconsistent (i.e., con-
tain contradictory one-literal clauses), in which case
the entire formula is inconsistent.

Most of the theorems that we have submitted to the
proof procedure program have been proven solely by
the use of the N-matching procedure, and do not re-
quire the generation and testing of QFSI. In fact, all the
theorems that have resulted so far from the logic trans-
lation routine are of this sort; their negated matrices
contain one or more one-literal clauses that are proven
to be ultimately contradictory by the N-matching pro-
cedure. It may require as long as five or six minutes to
prove theorems whose negated matrices contain no
one-literal clauses, but we have not found this to be a
serious difficulty since we have used the proof proced-
ure program primarily in conjunction with the logic
translation routine contained in Sections DA and DB of
the program.

Conclusion

As we have seen, the program described in this
paper is capable of proving a number of moderately
complicated arguments in ordinary English that re-
quire propositional logic or first-order functional logic
for their symbolization. We therefore regard the pro-
gram as a significant contribution to our understanding
of the logic of natural language sentences. This area
of study is of interest not only for its own sake but also
for its potential applications to question-answering and
information-retrieval systems, where the answer to an
inquiry posed in natural language is usually not explic-
itly stored but must be found by making deductions on
the basis of the sentences or facts already stored. The
most interesting part of the program, at least in our
view, is not Section DA, since there are many dictionary
lookup and parsing routines already in existence, nor is
it Section DC, since logical proof-procedure programs
are not exactly new either. Rather, it is the combina-
tion of linguistic and logical analysis that is found
principally in Section DB, and the coming to grips with
the special problems that arise from the union of the
two, such as the matter of the correct level of analysis
to employ for the logical translation of an argument.

The selection criterion that we have devised for choos-
ing Analysis I, II, III, or IV, though a bit crude, has
nevertheless considerable practical value in that it en-
ables the program to avoid a lot of unnecessary logical
computation; it amounts, after all, to doing a certain
amount of logical calculation in advance of entering
the actual proof-procedure routine, and an important
question, worthy of further investigation, is just how
much of the logic can be done in this way. Perhaps in
some cases it would be possible to prove some argu-
ments valid or invalid without employing a proof-pro-
cedure algorithm at all, though this would require con-
siderably more knowledge of the way in which people
understand sentences and arguments in ordinary lan-
guage and of their methods of reasoning. In particular
a better understanding of the way in which a person
rejects an invalid argument should be of considerable
use, since a proof-procedure is designed to prove argu-
ments valid rather than invalid, and in the areas that
we view as providing the most important potential ap-
plications of our research, rejection is just as important
as proof. In law, for example, it is just as important to
know which actions are illegal as to know which are
legal.

Apart from applications that require logical com-
putation, a logic translation program such as ours may
be of use in mechanical translation, or in abstracting
and paraphrasing, where it would be desirable to store
a concise formal representation of the input sentences.
The logical language used would therefore be a kind
of intermediate language, and would have to operate
in conjunction with programs for translating the logical
forms into sentences of the various output languages or
for piecing them out with semantic content in various
other ways. These purposes would of course require a
logical language considerably more expressive than the
first-order predicate calculus on which our program is
based.

In view of the many actual and potential applica-
tions of our research into the logic of natural language
sentences, therefore, it is clear that this subject is by
way of becoming an important branch of computational
linguistics, and that the further development of pro-
grams like the one that we have described will be of
considerable practical as well as theoretical signifi-
cance.

Received May 3, 1965

References
1. Simmons, R. F., “Answering Eng-

lish questions by computer: a
survey,” Communications of the
ACM, Volume 8, No. 1, January
1965, pp. 53-70.

2. Copi, I. M., Symbolic Logic, Mac-
millan, New York, 1958, p. 140,
example 3.

3. Yngve, V. H., “A framework for
syntactic translation,” Mechanical
Translation, Vol. 4, No. 3, De-
cember 1957, pp. 59-65.

4. Quine, W. V., Mathematical
Logic, Harvard University Press,
Cambridge, Mass., 1958, pp. 23-
26.

5. Yngve, V. H., An Introduction to
COMIT Programming, M.I.T. Press
Cambridge, Mass., 1962.

6. Yngve, V. H., COMIT Program
mers' Reference Manual, M.I.T.
Press, Cambridge, Mass., 1962.

7. Yngve, V. H., “A programming
language for mechanical transla-

66 DARLINGTON

tion,” Mechanical Translation,
Vol. 5, No. 1, April 1958, pp.
25-41.

8. Copi, I. M., Symbolic Logic, Mac-
millan, New York, 1958, p. 140,
example 1.

9. Copi, I. M., Introduction to Logic,
Macmillan, New York, 1955, p.
275, example 4.

10. Wang, H., “Toward mechanical
mathematics,” IBM J. Res. De-

velop., Vol. 4, No. 1, January
1960, pp. 2-22.

11. Davis, M. and Putnam, H., “A
computing procedure for quanti-
fication theory,” JACM, Vol. 7,
No. 3, July 1960, pp. 201-215.

12. Guard, J. R., “Automated logic
for semi-automated mathematics,”
Contract No. AF19(628)-3250,
Project No. 5632, Task No.
563205, Scientific Report No. 1,
Applied Logic Corporation,

Princeton, New Jersey, March 30,
1964.

13. Copi, I. M., Symbolic Logic, Mac-
millan, New York, 1958, p. 140,
example 4.

14. Ibid., example 6.
15. Ibid., example 8.
16. Ibid., p. 158, example 1.
17. Guard, J. R., op. cit., pp. 23-24.
18. Quine, W. V., Methods of Logic,

Holt, Rinehart, and Winston, New
York, 1959, pp. 26 ff.

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS 67

