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Machine Methods for Proving Logical 
Arguments Expressed in English* 

by Jared L. Darlington, Research Laboratory of Electronics, Massachusetts Institute of 
Technology 

This paper describes a COMIT program that proves the validity of logical 
arguments expressed in a restricted form of ordinary English. Some 
special features include its ability to translate an input argument into 
logical notation in four progressively refined ways, of which the first 
pertains to propositional logic and the last three to first-order functional 
logic; and its ability in many cases to select the "correct" logical trans- 
lation of an argument, i.e., the translation that yields the simplest proof. 
The logical evaluation part of the program uses a proof procedure al- 
gorithm that is an amalgam of the "one-literal clause rule" of Davis- 
Putnam and the "matching algorithm" of Guard. It is particularly effi- 
cient in proving theorems whose matrices in conjunctive normal form 
contain one or more one-literal clauses (atomic wffs), but it will also 
prove theorems whose matrices contain only polyliteral clauses. The 
program has been run on the I.B.M. 7094 computers at M.I.T. and 
utilizes the time-sharing facilities provided by Project MAC and the 
Computation Center. 

Introduction 
A considerable amount of work has recently been 
done in the general area of automatic translation of 
ordinary language into the terminology of symbolic 
logic. We shall not attempt here to give a general de- 
scription of this work, since it has already been sum- 
marized and discussed in some detail by R. F. Simmons 
in section 7 of his excellent report, “Answering English 
Questions by Computer: a Survey”1. Suffice it to say 
that no one has essayed the construction of a general 
logic translation program that would, taking account 
of all the amphibolies and polysemies of natural lan- 
guage, unambiguously parse any English sentence and 
translate it into the notation of symbolic logic. The 
syntactic and semantic problems involved are just as 
difficult, if not more so, than those of translating be- 
tween natural languages. The existing logic transla- 
tion schemes are based, therefore, on systems of re- 
stricted English, with limited grammars and vocabu- 
laries. They are, for all that, at least potentially quite 
useful for posing questions and submitting problems 
to computers in ordinary language, so long as the re- 
strictions of the input language are simple and clear 
enough to be easily grasped by the user, and so long 
as provision is made for the user to correct his mis- 
takes and rephrase his problem if he doesn't get it 
right the first time. In this connection, the time-shar- 
ing systems that are being installed in several compu- 
tation centers are particularly useful, in that they per- 
mit  the  programming  of  error-detection  devices  that 
* This work was supported in part by the Joint Services Electronics 
Program under contract DA36-039-AMC-03200(E); and in part by 
the National Science Foundation (Grant GN-244). An abbreviated ver- 
sion of the paper was read at the IFIP Congress 65 in New York 
City in May, 1965. 

immediately reject ungrammatical sequences, mis- 
spelled words, etc., and allow the user sitting at a con- 
sole to retype the problem in whole or in part. 

The logic translation program developed by the 
present author differs from some of the others in plac- 
ing primary emphasis on the evaluation of arguments, 
a traditional concern of the logician since the ad- 
vent of the Aristotelian theory of the syllogism. An 
argument may be defined semantically as a group of 
propositions organized into premisses and conclusion, 
where the propositions that constitute the premisses 
provide evidence for the truth of the conclusion. Or an 
argument may be defined syntactically as a string of 
permissible sentences that are divided into premisses 
and conclusion by a syntactic marker, such as a word 
like 'therefore' or 'since'. Our program, for example, 
requires one of the sentences of the string to begin 
with 'therefore', and takes the sentence or sentences to 
the left of 'therefore' to be the premisses and those to 
the right to be the conclusion. This syntactic definition 
of 'argument' itself constitutes one of the restrictions 
of our input language, since there are many arguments 
that occur in ordinary language in which the order of 
premisses and conclusion is inverted, as in arguments 
of the form 

p because q 

or in which the relation between premisses and con- 
clusion is not explicitly denoted by any connective 
words but is simply understood, as in 

X is not expected to accompany the team on the 
next road trip. His ankle injury will probably keep 
him out of action for several more weeks. 
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in which the second sentence states the evidence for 
the expectation expressed by the first sentence. This 
argument lies outside the scope of our program for an- 
other reason: its evaluation requires the techniques of 
inductive rather than deductive logic. Our program 
will prove arguments only if they are deductively valid, 
in the sense that to assume the premisses true and the 
conclusion false would be self-contradictory. A deduc- 
tively invalid argument may of course be inductively 
valid, if the premisses provide good evidence for the 
conclusion, but we have not attempted to include a 
set of rules for testing the inductive validity of argu- 
ments, though the program could be adapted for this 
purpose. 

Directly related to this emphasis on the evaluation 
of arguments is another difference between our pro- 
gram and the others, namely, the fact that our program 
must distinguish several "levels of analysis" or ways 
of translating the sentences of an input argument. A 
propositional logic analysis is entirely adequate to 
prove an argument like 

If Henry is a member of the Socialist Party (SP), 
then Henry is not a member of the Progressive 
Party (PP). Henry is a member of the PP. Therefore 
Henry is not a member of the SP. 

which may be symbolized in propositional logic as 

p implies not-q, q, therefore not-p 

but it will not suffice for an argument like 

All circles are figures. Therefore all who draw circles 
draw figures.2 

which may be symbolized in first-order functional logic 
as 

(Ax) (Cx implies Fx). Therefore (Ay) ((Ez) (Cz 
& Dyz) implies (Ew) (Fw & Dyw)). 

To symbolize this argument in terms of propositional 
logic would yield 

p, therefore q 
which is clearly invalid. Our program, in fact, is cap- 
able of providing up to four progressively refined 
logical translations for an input argument. The first of 
these translations, “Analysis I,” pertains to propositional 
logic, and the last three, “Analyses II, III and IV,” to 
first-order functional logic. In Analysis I, each sentence 
or sentential clause is replaced by a single propositional 
letter, while in Analyses II, III, and IV, the sentences 
and sentential clauses are symbolized in terms of quan- 
tifiers, variables, individual constants, and unary, 
binary, and ternary predicates. In Analysis II, all nouns, 
adjectives, relative clauses, and prepositional phrases 
are symbolized as unary predicates and are replaced 
by terms of the form “P/.n,” where 'n' denotes a nu- 
merical subscript of less than 500. Analysis III differs 
from  II   in   employing  binary  and  ternary  predicates, 

i.e., two- and three-term relations, in addition to unary 
predicates. Transitive verbs, prepositions, and phrases 
like 'is greater than' and 'is a member of are treated 
as binary relations and are replaced by terms of the 
form “P/.n,” where 'n' denotes a numerical subscript 
equal to or greater than 500, and verbs like 'gives' are 
treated as ternary relations if they are accompanied by 
an indirect object, while nouns and adjectives continue 
to be symbolized as unary predicates as in II. Analysis 
IV differs from II and III solely in its treatment of 
phrases like 'the king of France', i.e., definite descrip- 
tions. Analyses II and III regard such phrases as proper 
names and replace them by individual constants, i.e., 
terms of the form “IND/.n,” while IV analyses them as 
asserting the unique existence of the subject referred 
to. Each of these four translations thus embodies more 
of the meaning of the input sentences than its prede- 
cessors, but in logical analysis the aim is not to ex- 
press as much of the meaning as possible, as in trans- 
lation between natural languages, but rather to dis- 
cover how much of the meaning it is necessary to con- 
sider in order to prove the argument valid. 

The fact that an argument may be logically sym- 
bolized in several different ways raises the question of 
which analysis should be selected to provide the input 
for the logical evaluation part of the program. Rather 
than starting the logical computation with the simplest 
analysis or the most detailed analysis, the program 
employs a criterion, based on the amount of repetition 
between the premises and conclusion, to decide which 
of the four analyses is likeliest to yield the simplest 
proof. This decision, however, is not final: if it ap- 
pears that the argument as symbolized cannot be 
proven, the operator may interrupt the logical com- 
putation and direct the program to try proving a for- 
mula resulting from another analysis of the argument. 
This type of operator intervention is easily accom- 
plished in the M.I.T. time-sharing system, into which 
the program has been incorporated. 

In addition to permitting a considerable amount of 
operator control over the course of a running program, 
the use of time-sharing has, as we have discovered, 
several further advantages over batch processing. For 
example, it is quicker and easier using time-sharing to 
check out and debug new routines, take dumps, etc., 
and it is simpler to save and resume compiled pro- 
grams. Time-sharing has one minor disadvantage inso- 
far as our own program is concerned, which is that our 
program has grown too large for the COMIT time-shar- 
ing system to compile. We have therefore split up the 
program into three convenient sections, called “DA 
COMIT,” “DB COMIT,” and “DC COMIT,” and designed to 
run consecutively. The three sections of the program 
have all been compiled and saved (and named “DA 
SAVED,” “DB SAVED,” and “DC SAVED,” respectively), so 
one section may be resumed as soon as the previous 
section is finished, and the effect is that of running a 
single  program;  we  shall  therefore  continue  to speak 
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of DA, DB, and DC as constituting one program. The 
three sections do correspond quite closely to natural 
divisions of the program, since DA does the look-up 
and parsing of the input sentences, DB does the logical 
translation of the parsed sentences, and DC does the 
logical evaluation of the resulting formulae. The divi- 
sion between DA, DB, and DC corresponds, up to a point, 
to Yngve's3 conception of mechanical translation as 
requiring three principal stages, i.e., analysis of the 
input sentences, conversion of the structures of the 
input sentences into corresponding structures of the 
output language, and synthesis of the output sentences. 
Roughly speaking, DA and DB correspond to the first 
two of Yngve's three stages, but DC does not corre- 
spond to his third stage. Our program does not have to 
synthesize the output sentences, since validity is a 
matter of logical form or structure rather than content, 
and the evaluation routine DC operates solely on the 
logical forms of the sentences. We shall be discussing 
these three sections of the program in greater detail in 
the remainder of the paper. 

Please note our use of quotation marks: throughout 
the paper we follow the convention for the use of 
single quotes (inverted commas) that is explained in 
W. V. Quine's Mathematical Logic4, according to which 
a word, phrase, or sentence that is “mentioned” (as 
opposed to “used”) is enclosed within single quotes, 
and the quotation is regarded as naming the entity 
within the quotes. For this reason, it is necessary to 
place any punctuation marks that are not actually part 
of the sequence named outside the single quotes, lest 
the punctuation marks be construed as part of the 
name of an entity. This convention accords with the 
current usage of many logicians, though it conflicts 
with the more journalistic policy of placing quotation 
marks outside commas and periods regardless of logic. 
We do, however, follow current journalistic procedure 
in placing double quotes, and single quotes that de- 
limit quotations within quotations, outside commas and 
periods; and we occasionally omit quotes altogether 
where no ambiguity is likely to result. 

Initial Stages of the Program—Lookup and Parsing 
The operator at the time-sharing console starts the 
program by typing 'RESUME DA', or simply 'R DA'. He 
then proceeds to type in an argument. After the last 
sentence, he types 'DONE', which signals to the pro- 
gram that the input is finished. The program then pro- 
ceeds to look up each word and punctuation mark of 
the argument in a dictionary, or "list rule," whose func- 
tion is to supply subscripts specifying the syntactic 
class or classes to which a word may belong. There are 
nine principal syntactic classes, denoted by the literal 
subscripts 

ADJN, CONJ, DET, NOT, P, PREP, PRNAME, RELPR, and 
VPOS. 

The   category   ADJN   comprises   both   adjectives   and 

nouns, which may be lumped together since the logic 
translation routine regards both adjectives and nouns 
as unary predicates. An incidental advantage of this 
procedure is that it avoids parsing problems stemming 
from the fact that nouns frequently occur in adjectival 
positions, as in 'birthday present' (though it does not 
avoid the problem that many such expressions are 
idiomatic), or from the fact that adjectives frequently 
occur in nominal positions, as in 'none but the brave 
deserve the fair'. The category CONJ comprises the con- 
junctive words 

and, iff (if and only if), implies, nor, or, and then. 

('But' is regarded as a variant of 'and', and is changed 
to 'and' during the lookup.) The category DET com- 
prises the five determiners 

all, some, no, only, and the. 

('Each' and 'every' are changed to 'all', and 'a' and 'an' 
are changed to 'some'.) The category NOT includes 
negative particles, of which 'not' is the only one em- 
ployed at present. The category P comprises punctua- 
tive words, whose primary function is to separate 
sentences or sentential clauses. In addition to the con- 
junctive words, and the period and comma, the cate- 
gory P includes 

both, either, if, neither, that (in the context 'implies 
that'), and therefore. 

The remaining categories are as follows: PREP in- 
cludes the prepositions, PRNAME includes the proper 
names, RELPR includes the relative pronouns, and VPOS 
includes both transitive and intransitive verbs. In ad- 
dition to the nine primary syntactic categories, there 
are three secondary categories, so called because they 
figure only in a routine, directly following the diction- 
ary lookup, that performs some verbal rearrangements 
and simplifications, and they are eliminated before the 
program enters the parsing routine. Of these three 
secondary categories, COMP denotes comparative par- 
ticles like 'as', 'than', 'more', and 'less'; COMPADJ in- 
cludes comparative forms of adjectives; and VAUX in- 
cludes auxiliary verbs, like 'will', 'have', and 'do'. 
The vocabulary that the program employs is chosen 
mainly from the examples that are submitted to the 
program. It is, however, unnecessary to recompile the 
program every time it is desired to submit an argu- 
ment with new vocabulary, since words that are not 
found in the program's dictionary may be typed di- 
rectly into the workspace from the console, along with 
their appropriate subscripts. A word thus typed in goes 
onto a supplementary shelf, where it may be found if 
it recurs in the argument. This supplementary diction- 
ary does not become a permanent addition to the 
dictionary of the compiled program, so if it is planned 
to use the new vocabulary at all frequently, it is bet- 
ter to recompile the program with the new words 
added  to  the  list  rule.   The  dictionary  has  been sim- 
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plified by listing only the singular forms of regular 
nouns and the infinitives of regular verbs, so if a word 
is not found in the dictionary the program (employing 
a variant of the method of “longest match”) reduces 
it to a singular noun or a verbal infinitive, if possible, 
and looks it up again. Nouns remain in the singular, 
since the determiner of a noun provides the transla- 
tion routine with enough information about number 
(logically speaking, 'all man' is just as good as 'all 
men'), and verbs remain in the present infinitive, 
thereby facilitating the reduction of certain verbal 
forms to others, as will be explained later on, when 
we discuss propositional logic translation. The diction- 
ary lookup and syntactic subscripting procedures are 
summarized in the following outline. 

OUTLINE  OF THE DICTIONARY LOOKUP  AND SYNTACTIC 
SUBSCRIPTING ROUTINE 

Input shelf is Shelf 9, output shelf is Shelf 2, supple- 
mentary dictionary is Shelf 100. 

1. Start. Read in next word, W, from input shelf. 
1.1. Succeed: go to 2. 
1.2. Fail: DONE. 

2. Look up W in list. 
2.1. Succeed:    put    appropriate    subscripts    (/ADJN, 
/DET, /CONJ, etc.) on W; queue W onto output shelf; 
go to 1. 
2.2. Fail: look up W in supplementary dictionary. 

Succeed: go to 2.1. 
Fail: does W end in 'ies' or 'ied'? 
  Yes: change 'ies' ('ied') to 'y'; go to 2. 
  No: does W end in ‘s’? 
    Yes: go to 3. 
     No: does W end in 'd'? 
       Yes: go to 3. 
        No: does W end in ‘e’? 

Yes: if W results from deletion of final 'd' or 
's', go to 3. If not, go to 4. 
No: does W end in a double consonant? 
   Yes: if W results from deletion of final 'ed', 
   go to 3. If not, go to 4. 
   No: go to 4. 

3. Delete final letter of W; go to 2. 

4. Ask operator, “What part of speech is W?” Opera- 
tor responds by typing in an item of the form 

—/SUB + 
where 'SUB' denotes one of the nine principal syntactic 
categories ADJN, DET, etc. (The plus sign has no signifi- 
cance other than the fact that the COMIT “format s 
input,” which allows input items to be subscripted, re- 
quires that each input item be followed by the punc- 
tuation mark ‘+’.) The program then creates the item 

W/SUB 
and adds it to the supplementary dictionary. In some 
cases  the  operator  must  retype W;  e.g.,  if W is ‘sold’, 

an irregular past tense verbal form, the operator types 
SELL/VPOS+ 

in order to reduce it to the present infinitive. The 
program does this automatically for past tenses of 
regular verbs. 

When 4 is finished, go to 1. 

After all the words and punctuation marks of the 
input sentences have been subscripted, the program 
performs a series of verbal rearrangements and sim- 
plifications which, for want of a better word, we may 
call “transformations.” These transformations are es- 
sentially of six types, and are performed in the follow- 
ing order. 

(1) Structures of the form 

$1/COMP + $1/ADJN + $1/COMP 

and 
$1/COMPADJ +  $1/COMP 

e.g., 
AS/COMP + GREAT/ADJN + AS/COMP, MORE/COMP + 
TALL/ADJN + THAN/COMP, GREATER/COMPADJ + THAN/ 
COMP, 

are compressed into one word and are given the sub- 
script /COMPADJ, thereby becoming 

ASGREATAS/COMPADJ, MORETALLTHAN/COMPADJ, 
GREATERTHAN/COMPADJ, 

etc. (The '$1' symbol in COMIT denotes any single 
constituent.) 

(2) The  verbal   auxiliaries   WILL/VAUX,  HAVE/VAUX, 
DO/VAUX, etc., are eliminated, and any negative parti- 
cles are placed after their verbs. For example, 

WILL/VAUX + COME/VPOS, HAVE/VAUX + COME/VPOS, 
DO/VAUX + COME/VPOS, 

etc., are reduced to COME/VPOS, and 
WILL/VAUX + NOT/NOT + COME/VPOS, HAVE/VAUX 
+ NOT/NOT + COME/VPOS, DO/VAUX + NOT/NOT + 
COME/VPOS, 

etc.. are reduced to COME/VPOS + NOT/NOT. Any 
verbal auxiliary that is not accompanied by a main 
verb is itself taken as a main verb, and has its sub- 
script /VAUX replaced by /VPOS. 

(3) Structures of the form 

IS/VPOS + $1/COMPADJ 

and 

IS/VPOS + NOT/NOT  +  $1/COMPADJ 

delete the IS/VPOS and change the subscript/COMPADJ 
to /VPOS. For example, 
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IS/VPOS + GREATERTHAN/COMPADJ, AND IS/VPOS + NOT/ 
NOT   +  ASGREATAS/COMPADJ 

are converted into 

GREATERTHAN/VPOS, and ASGREATAS/VPOS + NOT/NOT. 

(4) Structures of the form 

$1/VPOS + $1/COMPADJ, AND $1/VPOS + NOT/NOT + $1/ 
COMPADJ 

have the $1/VPOS and the $1/COMPADJ compressed into 
one word, which is subscripted with /VPOS. For exam- 
ple, 

RUN/VPOS + ASFASTAS/COMPADJ, AND SEE/VPOS +  NOT/ 
NOT  + FARTHERTHAN/COMPADJ, 

are converted into 
RUNASFASTAS/VPOS, AND SEEFARTHERTHAN/VPOS + NOT/ 
NOT. 

(5) Structures of the form 

$1/VPOS + $1/PREP, 

and 

$1/VPOS  + NOT/NOT +  $1/PREP 

have the $l/VPOS and the $1/PREP temporarily com- 
pressed and looked up in a special dictionary to see 
whether they can form a single relation. If so, they 
remain compressed, and are subscripted with /VPOS. 
For example, 

STOP/VPOS  +  IN/PREP 

and 

GET/VPOS + NOT/NOT + TO/PREP 

become 

STOPIN/VPOS 

and 

GETTO/VPOS   +   NOT/NOT, 

while 

OWN/VPOS   +   TO/PREP 

remains uncompressed. 

(6) Finally, the dummy word 

ONE/ADJN 

is inserted in a couple of special cases, in order to 
facilitate the subsequent parsing. For example, 

THERE  +  IS/VPOS 

becomes 

SOME/DET   +  ONE/ADJN   +  IS/VPOS, 

and any determiner not directly followed by a $1/ADJN 
is provided with ONE/ADJN. For example, 

ALL/DET     +     WHO/RELPR   +     DRAW/ADJN, VPOS     + 
CIRCLE/ADJN, VPOS 

becomes 

ALL/DET     +    ONE/ADJN    +    WHO/RELPR     + 
DRAW/ADJN, VPOS   +   CIRCLE/ADJN, VPOS. 

As a result of the dictionary lookup and preliminary 
transformations, each item of the input text should be 
subscripted with one or more of the subscripts denot- 
ing the nine principal syntactic categories. Any sec- 
ondary subscripts should have disappeared by this 
time, but if any remain, they will cause the program 
to stop with an appropriate error comment. The next 
step is to parse the input sentences according to the 
following grammar, which is presented in the exact 
form in which it appears in the program, i.e., as a list 
rule, or dictionary of symbols. The COMIT notation, 
which the program employs, is explained in greater 
detail in An Introduction to COMIT Programming5 and 
COMIT Programmers' Reference Manual6. A good in- 
formal presentation is “A Programming Language for 
Mechanical Translation”7, by V. H. Yngve. 

GRAMMAR OF  THE  PROGRAM, IN THE FORM  OF A COMIT 
LIST RULE 
−P05 S = NP +V + OR + NP + VP*0 + OR + NP + VP*1+ *(+ –/DET– 

+–/ADJN+–/PRNAME     * 
SNOVP = NP + *( + –/DET+ –/ADJN+ –/PRNAME     * 
SNONP = V + OR + VP*0 + OR + VP*L + *(+ –/VPOS     * 
NP= – /PRNAME + OR + NP*0 + OR + NP*1 + *( + –/DET– 

+–/ADJN+–/PRNAME      * 
NP*0=ADJNCL + OR + NP*2 + *(+–/ADJN     * 
NP*L=–/DET + NP*0+*(+–/DET      * 
NP*2 = ADJNCL + RELCL + OR + ADJNCL + PPCL– 

 + *(+– /ADJN     * 
ADJNCL= –/ADJN + OR + ACL*0 + OR + ACL*L– 

+ *(+–/ADJN      * 
ACL*0 = – /ADJN + ADJNCL + *(+–/ADJN      * 
ACL*L=–/ADJN + ACL*2 + *(+–/ADJN     * 
ACL*2 = – /CONJ + ADJNCL + *( + – /CONJ     * 
VP*0 = V + NP + *( + –/VPOS     * 
VP*L=VP*0 + PPCL+*(+–/VPOS     * 
V = – /VPOS + OR + VNEG + *(+– /VPOS     * 
VNEG = – /VPOS + – /NOT + *( + – /VPOS     * 
IVP=NP + V+*(+ –/DET + –/ADJN+ –/PRNAME      * 
RELCL = RCL*1 + OR + RCL*2+*(+–/RELPR       * 
PPCL=PPCL*L + OR + PPCL*2 + *( + –/PREP     * 
RCL*L = RCL*2 + RCL*3 + *(+–/RELPR     * 
PPCL*L =PPCL*2 + PPCL*3 + *(+ –/PREP     * 
RCL*2 = –/RELPR + V + OR + – /RELPR + VP*0 + OR– 
                   + –/RELPR + VP*1 + OR + – /RELPR + IVP– 
                   + *(+– /RELPR      * 
PPCL*2 =– /PREP + NP+*(+ –/PREP     * 
RCL*3 =– /CONJ + RELCL + *( + –/CONJ     * 
PPCL*3 = – /CONJ + RELCL + *( + – /CONJ     * 
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The left half of each list subrule of P05 is a symbol 
of the grammar, and the right half of each rule gives 
all the ways of rewriting the symbol in the left half. 
If there are more than one expansion for a symbol, 
they are separated by OR. At the end of each rule is a 
* ( followed by one or more terms of the form —/SUB. 
These items denote all the possible initial words of 
the possible expansions. Thus, the symbol SNONP may 
be rewritten as V or VP*0 or VP*l, but any clause of 
these three types must begin with a lexical item of 
the form $1/VPOS. This information is included in the 
right half of each rule because it enables the parsing 
routine to be written more efficiently than otherwise— 
if a sentence is being parsed and the next lexical item 
to be accounted for is an ADJN, then the next struc- 
ture could not possibly be a V, VP*0, or VP*l, or, for 
all that, an SNONP. The asterisk at the far right of each 
list subrule is the go-to; in COMIT, if a rule or subrule 
bearing the asterisk go-to is successfully executed, then 
control passes to the next rule (not subrule) in se- 
quence. 

The parsing program will parse complete sentences 
(denoted by S), “sentences” lacking a main verb 
phrase (denoted by SNOVP), and “sentences” lacking a 
main noun phrase (denoted by SNONP). All three types 
are illustrated by the compound sentence 

Jack and Jill goup the hill and godown the hill. 
(Jack and Jill go up the hill and go down the hill.) 

whose parsing will treat 'Jack' as an SNOVP, 'Jill goup 
the hill' as an S, and 'godown the hill' as an SNONP. A 
routine directly following the parsing expands SNOVP's 
into S's, by borrowing the main verb phrases from the 
immediately following S's and SNONP's, and expands 
SNONP's into S's, by borrowing the main noun phrases 
from the immediately preceding S's and SNOVP's. The 
sample sentence will then be expanded into 

Jack goup the hill and Jack godown the hill and 
Jill goup the hill and Jill godown the hill. 

In addition to parsing S's, SNOVP's and SNONP's, the 
parsing routine has the task of determining the 
beginnings and ends of these structures. It assumes 
that a sentence or sentential clause begins with the 
first non-P word (i.e., the first word not bearing the 
subscript /P) that it encounters, and it stops with the 
longest sentence or sentential clause directly followed 
by a P-word that it can find. 

The parsing routine is a straightforward program 
that attempts to generate all the sentences of the gram- 
mar from left to right by successively applying the 
phrase structure rules to the expansion of symbols, 
thereby generating successive word-class symbols that 
are matched against the words of the input sentence. 
If a word-class symbol matches the corresponding 
word in the input sentence, the sentence is provisionally 
accepted, but if they do not match, the analysis is 
rejected.   The  proposed  parsings,  or  partial  analyses, 

of the input sentence are stored in pushdown form on 
Shelf 1. Each analysis is of the form 

.........+ *Q/.n + X +...................+ ** 

in which the part of the formula to the left of the 
marker *Q has already been found to be compatible 
with the sentence being parsed, the numerical sub- 
script /.n on *Q is the number of words taken account 
of so far increased by 1, X is the next symbol to be 
tested, the part of the formula between X and ** is 
the proposed parsing for the rest of the sentence, and 
the marker ** denotes the end of the analysis and 
separates it from the other analyses on the same shelf. 
An analysis is read in from Shelf 1, and the symbol x 
directly to the right of *Q is tested. If X is a word-class 
symbol, it will be of the form —/SUB, where SUB may 
be an ADJN, DET, etc., and the next word (nth word) 
of the sentence is looked at to see whether it has the 
subscript /SUB. If it does, then the analysis is con- 
firmed, any subscripts other than SUB on the word are 
deleted, the marker *Q is moved to the right of the 
next symbol, the numerical subscript /.n on *Q is in- 
creased by 1, and the analysis is stored at the front 
of Shelf 1. If, however, the word does not have the 
subscript —/SUB, then the analysis is invalidated. If 
the symbol X directly to the right of *Q is not of the 
form —/SUB, then it is looked up in the list P05 to 
determine its possible expansions, a new analysis is 
created for each expansion, the marker *Q is moved to 
the right of the symbol expanded, and the new anal- 
yses are stored at the front of Shelf 1. This procedure 
is described in greater detail in the following outline. 

OUTLINE OF THE PARSING ROUTINE 

Shelf 9 is input shelf, Shelf 6 is output shelf, Shelf 1 
is for the partial parsings, Shelf 8 is for the complete 
parsings, Shelf 4 is for all the expansions of a given 
symbol X under analysis, and Shelves 2, 3, and 5 are 
for temporary storage of parts of the formula under 
analysis. 

1. Start. Has first item of Shelf 9 a /P subscript? 
1.1. Yes:  delete any numerical subscript; queue item 

onto Shelf 6; go to 1. 
1.2. No: is Shelf 9 empty? 
 
1.21. Yes: DONE. 
1.22. No:   subscript   first  item  of  Shelf  9  with  /.1, 

second   item  with  /.2,   etc.;   initialize   Shelf   1 
With *Q/.1 +  SNONP  +  **   +  *Q/.1  +  SNOVP   + 
** + *Q/.1 + S + **; go to 2. 

2. Read in from Shelf 1 up to and including first **. 
2.1. Succeed:   locate   item   of   Shelf   9   with   same 

numerical subscript as *Q in workspace; make a 
copy of this item, and place it at front of Shelf 9; 
queue everything up to but not including *Q onto 
Shelf 3; go to 3. 

2.2. Fail: go to 8. 
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3. Is   *Q  directly followed  by an  item  of  the  form 
—/SUB? 

3.1. Yes: move *Q to right of —/SUB; insert first item 
on Shelf 9 between them. This results in a se- 
quence of the form 

—/SUB  +  W/SUB2   +   *Q/.n 
Go to 4. 

3.2. No:   *Q is directly followed by  a symbol, say X. 
Move *Q to right of X; queue X + *Q onto Shelf 
3, leaving copy of X in workspace; store remainder 
of formula temporarily on Shelf 2; go to 6. 

4. Is — /SUB1 equal to, or a part of, SUB2? 
4.1. Yes: formula is a possible parsing; go to 5. 
4.2. No: delete workspace and Shelf 3; go to 2. 
•5. Is *Q directly followed by **? 
•5.1. Yes: formula is a complete parsing. Delete *Q; 

queue formula in workspace onto Shelf 3; trans- 
fer parsed sentence from Shelf 3 to Shelf 8; go 
to 2. 

5.2. No: formula is a partial parsing. Queue work- 
space onto Shelf 3; transfer formula from Shelf 3 
to front of Shelf 1; go to 2. 

6. Look up X in list P05; store part of formula up to 
but not including * ( (i.e., the possible expan- 
sions of X) on Shelf 4; delete *(. The items 
—/SUB remaining in the workspace denote possi- 
ble initial words of structures on Shelf 4. Read 
in next item, W, from Shelf 9. Do any of the items 
—/SUB in the workspace have the same literal 
subscript as W? 

6.1. Yes: parsing is legitimate so far; go to 7. 
6.2. No:   parsing is illegitimate; clear workspace, and 

Shelves 2, 3, and 4; go to 2. 

7. Read in next expansion of X from Shelf 4. 
7.1. Succeed: store expansion on Shelf 5; assemble 

partial parsing as follows: copy of Shelf 3 + Shelf 
5 + copy of Shelf 2; shelve resulting formula 
onto front of Shelf 1; go to 7. 

7.2  Fail: clear Shelves 2 and 3; go to 2. 

8. Find last word, w, in workspace that occurs before 
a $1/P; record the numerical subscript /.n of W; 
erase formula in workspace up to and including 
w; shelve everything after w onto front of Shelf 9; 
determine which parsing(s) on Shelf 8 take ac- 
count of exactly n words, and discard the others. 
Are there any parsings left? 

8.1. Yes: go to 9. 
8.2. No: stop with error comment. 

9. Is there exactly one parsing? 
9.1. Yes: go to 10. 
9.2. No: give each parsing a number, and ask operator 

which one he wants. Operator responds by typing 
–/.n+ 

where n is the number of the desired parsing. Go 
to 9.1. 

10. Check formula for wellformedness, using SCOPE 
routine (described below). Is formula well- 
formed? 

10.1. Yes: queue formula, followed by *), onto Shelf 
6; go to 2. 

10.2. No: stop with error comment. 

A typical sentence that the program has parsed is 

All who support Ickes will vote for Jones. 

which is a paraphrase of 'Whoever supports Ickes will 
vote for Jones', the first sentence of an example from 
I.M. Copi’s Symbolic Logic8. The parsing is given be- 
low. 

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL + 
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0 + 
V + SUPPORT/VPOS + NP + ICKES/PRNAME + VP*0 + V 
+ VOTEFOR/VPOS + NP + JONES/PRNAME + *) + ./P 

The SCOPE routine that the program employs serves 
the primary purpose of determining the extent of a 
formula or section of a formula, and the secondary pur- 
pose of testing the wellformedness of a formula. Di- 
rectly following the parsing routine, each symbol of the 
parsed formula is given a numerical subscript through 
a list lookup (any old numerical subscripts are auto- 
matically deleted), as follows: each symbol that is ex- 
panded into two symbols is given the numerical sub- 
script /.1 (these include S,  NP*1,   NP*2,   ACL*0,  ACL*1, 
ACL*2, VP*0, VP*1, VNEG, IVP,   RCL*1,   PPCL*1,  RCL*2, 
PPCL*2, RCL*3, PPCL*3); and each symbol that is re- 
written as one symbol is given the subscript /.0 (these 
include SNOVP, SNONP, NP, NP*0, ADJNCL, V, RELCL, 
PPCL). The remaining symbols are all lexical items, 
and are given the subscript /.32767 (equal to minus 
one, mod 215). The SCOPE routine determines the scope 
of a symbol X by putting the marker —/.1 immediately 
to the left of X, and then reading from left to right. 
Each item W encountered in the left-to-right search 
raises the subscript on the marker by the numerical 
subscript on W. The search ends when the count goes 
to zero. The essence of the SCOPE routine is the one- 
rule loop 

SCOPE $0 + $l/.G0 + $1 = 2/.l.*3 + 3 //*Q7 2 SCOPE 

The $0 finds the left end of the workspace; the $l/.G0 
finds the marker, so long as its subscript is greater than 
zero; and the $1 finds the item directly to the right of 
the marker. The loop can terminate in either of two 
ways, namely, if the count on the marker goes to zero, 
or if the workspace becomes empty except for the 
marker. The second contingency constitutes an error 
condition, indicating that the formula does not con- 
tain enough lexical items, so it is necessary to check 
the workspace after the failure of the loop to see 
whether the count actually has gone to zero. The SCOPE 
routine may thus be used to test the wellformedness 
of  a  parsed  sentence,  as  follows: after the loop termi- 
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nates, test whether count has gone to zero. If not, for- 
mula contains too few words, and is illformed. If so, 
check whether any words remain in workspace. If so, 
formula contains too many words, and is illformed. If 
not, formula is wellformed. 

Propositional Logic Translation 

Once the input argument is parsed, and all the 
SNOVP's and SNONP's have been expanded into complete 
s's, the program attempts a propositional logic analysis 
of the argument. This involves replacing each s and its 
corresponding sentence by a different propositional 
symbol, A/V, B/V, C/V, etc. Identical sentences are re- 
placed by the same propositional symbol, and con- 
tradictory sentences, i.e., sentences that differ only in 
that the main verb of one is followed by a NOT are re- 
placed by contradictory symbols, e.g., A/V and A/V, 
NOT. (The SCOPE routine can be used to find the main 
verb of any sentence, by first finding the main verb 
phrase, whether it be V, VP*0, or VP*l, and then find- 
ing the first verb of the main verb phrase. The main 
verb thus located is subscripted with /MAIN.) The 
criterion of synonymy that the program employs, i.e., 
that of complete identity in wording and word-order, 
is on the face of it extremely strict, but its effects are 
somewhat mitigated by the initial dictionary lookup 
and its ensuing “tranformations,” which frequently re- 
duce two apparently different sentences to the same 
wording and word-order. All verbal forms, as previ- 
ously noted, are reduced to the present infinitive. This 
may be justified by the consideration that verbal tenses 
are largely irrelevant to the statement of logical im- 
plications. For example, the idea (or proposition) that 
the butler's presence implies his being seen may be 
expressed in a wide variety of ways, some of which 
are obtainable by substituting different forms of the 
verb 'to be' in the sentential pattern 

If the butler ——present then he ——— be seen. 

Some of the possible substitutions are the pairs 'were', 
'would be'; 'had been', 'would have been'; and 'be', 
'will be'. They may all be regarded as variants of the 
basic implication 

If the butler be present then he (the butler) be 
seen. 

The propositional logic translation routine may be 
illustrated by the following example, which is a para- 
phrase of an example from I. M. Copi's Introduction 
to Logic 9, and has been successfully processed by our 
program. 

If I buy a new car or fix my old car then I'll get to 
Canada and stop in Duluth. If I stop in Duluth then 
I'll visit my parents. If I visit my parents then I'll 
stay in Duluth but if I stay in Duluth then I'll not 
get to Canada. Therefore I'll not fix my old car. 

The lookup and parsing transform this argument into 
the following: 

If I buy some new car or I fix my old car then I 
getto Canada and I stopin Duluth. If I stopin Duluth 
then I visit my parents. If I visit my parents then I 
stayin Duluth and if I stayin Duluth then I getto 
not Canada. Therefore I fix not my old car. 

Replacement of sentences by variables yields: 

If A/V or B/V then C/V and D/V. If D/V then F/V. 
If F/V then H/V and if H/V then C/V,NOT. Therefore 
B/V,NOT. 

in which 

A/V = I buy some new car 
B/V = I fix my old car 
C/V =  I getto Canada 
D/V = I stopin Duluth 
F/V =  I visit my parents 
H/V = I stayin Duluth 

At this stage, the decision whether to go further 
with the propositional logic analysis is made, the cri- 
terion being that, if one or more propositional letters 
occur both in the premisses and in the conclusion, then 
the propositional logic routine is carried out to its 
conclusion, but if there is no such repetition of terms, 
then the assumption is made that the propositional 
logic analysis could not possibly be successful, and the 
program proceeds with the functional logic analyses, 
i.e., Analyses II, III, and IV. The particular example 
under consideration does, however, pass the test, since 
the term B occurs both in the premisses and in the 
conclusion, so the partially translated argument is 
converted into a fully parenthesized formula of propo- 
sitional logic, i.e. 

((((((A)OR(B))IMPLIES((C)AND(D)))AND((D)IMPLIES 
(F)))AND(((F)IMPLIES(H))AND((H)IMPLIES 
(NOT(C)))))IMPLIES(NOT(B))) 

This involves the application of a set of rules for the 
insertion of parentheses in such a way that the scope 
of every C-word (i.e., word corresponding to a logical 
connective) is made perfectly precise. For sentences 
containing fewer than two binary connectives, this 
problem is trivial: P becomes (P), and P AND Q be- 
comes ((P) AND (Q)). A great many sentences con- 
taining two or more binary connectives likewise in- 
volve no difficulty; e.g., IF P, THEN Q OR R becomes 
((P) IMPLIES ( (Q) OR (R) )), and P AND EITHER Q OR 
R becomes ((P) AND ((Q) OR (R))). There do, none- 
theless, exist ambiguous or borderline cases, such as 
P AND Q OR R, concerning which it is useless to lay 
down general rules, except perhaps the rule that the 
input language should be restricted so as to exclude 
them. Ambiguous sentences or clauses are character- 
ized  by   the  fact  that   they  do  not  contain  sufficient 

  
48 DARLINGTON 



clues or indications as to where to place the paren- 
theses. These clues (of which the unambiguous clauses 
contain a sufficiency) are of several types. They in- 
clude: 

(i)  relative strength of connectives 
(ii)  placement of “groupers,” i.e., IF, BOTH, EITHER, 
and NEITHER. 
(iii)  placement   of   punctuation    marks,    such    as 
commas and periods; and 
(iv)  “symmetry” of connectives. 

As for (i), in a sentence like P IMPLIES Q AND R, the 
AND may be said to be “stronger” than the IMPLIES, in 
that the Q and R are bound together more strongly by 
the AND than are the P and the Q by the IMPLIES, re- 
sulting in ((P) IMPLIES ((Q) AND (R))) as the natural 
grouping. As for (ii) and (iii), the amphiboly of P AND 
Q OR R may be resolved either by employing a grouper, 
as in P AND EITHER Q OR R, or by inserting a comma, 
as in P, AND Q OR R, and in P AND Q, OR R. Or a com- 
bination of groupers and commas may be used. 
(Apropos, employing the grouper BOTH would not 
materially affect this example, as BOTH P AND Q OR R is 
still ambiguous.) Point (iv) is perhaps the hardest to 
formalize, but it is exhibited in clauses like P IMPLIES 
Q OR R IMPLIES S, and P OR Q AND R OR S, in which the 
middle connective seems to be the fundamental one 
regardless of the intrinsic “strength” of the connectives. 
This factor of symmetry apparently operates most 
strongly in clauses containing three connectives in 
which the two “outer” connectives are the same, but 
may differ from the “inner” one. It is debatable, 
though, whether the notion of symmetry of connec- 
tives can be extended beyond, or even as far as, clauses 
containing five connectives. 

Our program exploits all four types of clues, and 
incorporates them into a set of rules for the placement 
of parentheses (see below). These rules are applied in 
sequence to a sentence or clause until the main con- 
nective is located. Two more clauses are then marked 
off, i.e., that to the left of the main connective and 
that to the right of it. The leftmost clause is then sub- 
divided in the same way into two new clauses. This 
procedure is repeatedly applied until all the clauses 
are fully parenthesized, where the criterion of full 
parenthesization is that every connective occur in the 
context '). . .('. If the program fails to find the main 
connective of a given clause, it concludes that the 
clause is ambiguous, prints it out with a comment to 
that effect, and proceeds to parenthesize the rest of 
the sentence. 

The rules for parenthesizing and grouping are 
stated in the following outline. 

OUTLINE   OF  THE  PARENTHESIZING AND 
GROUPING ROUTINE 

The rules listed below are applied in sequence to an 

initially parenthesized clause “C,” until the basic con- 
nective of c has been found. 

1. If C contains no C-words, C is assumed to be fully 
parenthesized. 

2. If C contains exactly one C-word, the one C-word 
is basic. Furthermore, if the one C-word is NOR, 
i.e., if C is of the form NEITHER+P+NOR+Q, then 
C is  replaced by a clause of the form   ((P)  AND 
(Q)). 

3. If C contains exactly one C-word directly preceded 
by a comma, that C-word is basic, unless it occurs 
between IF and THEN. 

4. If C contains exactly three C-words,   and if C is 
“symmetrical,” then  the middle  C-word is basic. 
Furthermore, if C is of the form NEITHER P * Q 
NOR R * S, where * may be AND, OR, IMPLIES, or 
IFF, then C is replaced by a clause of the form 
((NOT(P * Q)) AND (NOT(R * S))). 

5. If all  the   C-words  in  C  are  AND,  or  if  all the 
C-words in C are OR, then the first C-word is basic. 

6. If C contains an AND+IF, not occurring between 
IF and THEN, then the AND is basic, unless C also 
contains an OR+IF not occurring between IF and 
THEN. 

7. If C contains an AND+EITHER or an AND+NEITHER, 
then the AND is basic, unless it is preceded by an 
IF. 

8. If C contains an OR+IF, not occurring between IF 
and THEN, then the OR is basic, unless C also con- 
tains  an AND+IF not occurring between IF  and 
THEN. 

9. If C contains an OR+EITHER or an OR+NEITHER, 
then the OR is basic, unless it is preceded by an IF. 

10. If C is of the form EITHER...............OR Q, then the 
last OR is basic. 

11. If all the C-words  in C are NOR, C is converted 
into an equivalent formulation employing NOT and 
AND, and the first AND is basic. 

12. If C is of the form NEITHER .......... NOR Q, then C is 
replaced by a clause of the form  (( NOT ( )) 
AND (NOT(Q))). 

13. If   C   contains   exactly   one   IMPLIES+THAT,   the 
IMPLIES is basic, unless it is preceded by an IF. 

14. If C contains exactly one IMPLIES, the IMPLIES is 
basic, unless it is preceded by an IF. 

15. If C contains exactly one IFF,   the IFF  is basic, 
unless it is preceded by an IF. 

16. If C contains a THEN, the THEN is  basic. The IF 
. . . THEN is replaced by IMPLIES. 

At the conclusion of the parenthesization, the for- 
mula is “tidied up” by erasing all superfluous groupers, 
i.e., all P-words that are not C-words. 

In the argument used to illustrate propositional 
logic translation, the partially translated formula is 
converted into a fully parenthesized formula of propo- 
sitional logic, through application of the above set of 
rules, as follows. 
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***** 
(If A/V OR B/V THEN C/V AND D/V)        (Input) 
((A/V OR B/V) IMPLIES (C/V AND D/V))      (Rule 16) 
( ( (A/V) OR (B/V)) IMPLIES (C/V AND D/V))      (Rule 2) 
( ((A/V) OR (B/V)) IMPLIES ((C/V) AND (D/V)))      (Rule 2) 

***** 

(IF D/V THEN F/V)      (Input) 
((D/V) IMPLIES (F/V))      (Rule 2) 

***** 
(IF F/V THEN H/V AND IF H/V THEN C/V,NOT)       (Input) 
((IF F/V THEN H/V) AND (IF H/V THEN C/V,NOT))   (Rule 4) 
( ((F/V) IMPLIES (H/V)) AND (IF H/V THEN C/V,NOT)) 
(Rule 2) 
(((F/V) IMPLIES (H/V)) AND ((H/V) IMPLIES (C/V,NOT))) 
(Rule 2) 

* * * * * 
(B/V,NOT)      (Input) 
(B/V,NOT)      (Rule 1) 
* * * * * 

The fully parenthesized formulae corresponding to 
the sentences of the argument are combined into a 
single formula of implicational form, according to the 
following procedure. The sentences left of THEREFORE 
are taken to be the premisses, and are separated from 
those to the right of THEREFORE, which are taken to 
be the conclusion. If there are more than one premiss, 
e.g., 

(P1). (P2). (P3)........ 

they are combined into the formula 

(((P1) AND (P2)) AND (P3))      ..  

The sentences of the conclusion are combined in the 
same way. Finally, the premisses are combined with 
the conclusion, by changing THEREFORE to IMPLIES, 
and putting a set of parentheses around the entire 
formula, i.e., 

(Premisses)  THEREFORE  (Conclusion) 

become 

((Premisses) IMPLIES (Conclusion)) 

The fully parenthesized formula is next tested for 
validity, using the Wang propositional calculus al- 
gorithm10. The principal proof procedure that the pro- 
gram employs is a combination of the “one-literal 
clause rule” of Davis-Putnam11 and the “matching 
algorithm” of Guard12, and it forms the body of the 
DC section of the program. As it is desired to obtain 
an immediate verdict as to the validity of the propo- 
sitional logic formulation, and as it is inconvenient to 
switch over to DC and back to DA again, since they are 
compiled separately, the Wang algorithm is employed 
to test the propositional logic formulae for validity. It 
provides  a short and  neat test of  validity, and it is easy 

to stick onto the end of the propositional logic transla- 
tion routine. It requires that the formula to be tested 
be in Polish prefix notation, and our program accom- 
plishes this conversion by means of a short routine 
that is a modification of a method devised by Yngve. 
This routine is described below. 

OUTLINE OF ROUTINE   FOR TRANSLATING A 
FULLY  PARENTHESIZED  FORMULA  INTO 
POLISH PREFIX NOTATION 

Shelf 1 is output shelf; Shelf 2 is input shelf; input 
formula is stored in expanded form on Shelf 2. 

1. Read in next item from Shelf 2. 
Succeed: go to 2. 
Fail: DONE. 

2. Is item a *) ? 
Yes: erase it; erase first *( on Shelf 1; go to 1. 
No: is it a binary connective? 
Yes: place it directly left of first *( on Shelf 1; go 
to 1. 
No: store it at front of Shelf 1; go to 1. 

This routine leaves the formula in reverse Polish nota- 
tion. It is, however, a simple matter to reverse it back 
again. The formula of our example then becomes 

IMPLIES + AND + AND + AND + IMPLIES + A/V + B/V 
+ IMPLIES + C/V + D/V + IMPLIES + D/V + F/V + 
AND + IMPLIES + F/V + H/V + IMPLIES + H/V + NOT 
+ C/V + NOT + B/V 

The formula is now ready to be tested by the Wang 
algorithm, and the answer 'valid' is readily obtained. 

The programming of the Wang algorithm and the 
more extensive proof procedure algorithm employed 
in section DC of the program illustrate the wide ap- 
plicability of COMIT. Originally designed as a pro- 
gramming language for mechanical translation7, it has 
also proved useful for nonlinguistic types of problems, 
and is no less efficient in this area than many other 
list-processing languages. Our program for the Wang 
algorithm runs quite rapidly, and proves reasonably 
long formulae in one or two seconds or less. Our proof 
procedure program for functional logic runs less 
rapidly, but this is attributable to the greater difficulty 
of proving theorems in functional logic rather than to 
any deficiency in COMIT. These proof procedure pro- 
grams are described in greater detail in the section 
entitled “Methods of Logical Evaluation.” 

If the propositional logic routine gives the answer 
'valid' for a formula, then the program stops. If, how- 
ever, the answer 'invalid' is given, or if the earlier test 
for the feasibility of a propositional logic analysis was 
negative, then the parsed argument is written out into 
“Channel A” (actually called “A CHANEL”), from 
where it is read in at the start of the next section of 
the program, i.e., DB. 
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Functional Logic Translation 

Section DB of the program, which translates the 
parsed arguments provided by DA into functional logic 
notation, is based on the interaction of three principal 
routines, i.e., “PHI,” “SFORM,” and “LF.” The routine 
PHI determines the sentence or part of a sentence that 
should be analysed next, SFORM converts this string 
into a quasi-logical formula, and LF translates the 
quasi-logical formula into a complete formula of func- 
tional logic. We shall first give an example of the pro- 
cedure, and then discuss it in detail. 

All who support Ickes will vote for Jones. Everyone 
whom Anderson will vote for is a friend of Harris. 
Jones is a friend of no one who is a friend of Kelly. 
Harris is a friend of Kelly. Therefore Anderson will 
not support Ickes. 

The first sentence of this argument, which is a para- 
phrase of an example from I. M. Copi's Symbolic 
Logic8 was used in a previous example. As pointed 
out earlier, a ONE/ADJN was inserted between 'All' and 
'who', the 'will' was deleted, and the 'vote for' was 
compressed to form a new verb, 'votefor'. At the start 
of Analysis II, an additional change is made, i.e., all 
the words of the predicate are compressed into a single 
symbol, which is regarded as an intransitive verb. The 
parsed sentence is thereby changed into the form given 
below, complete with subscripts. 

S/.1 + NP/.0 + NP*1/.1  +  ALL/.32767,DET +   NP*0/.0 + 
NP*2/.1 + ADJNCL/.0 + ONE/.32767,ADJN + RELCL/.0 + 
RCL*2/.1 + WHO/.32767,RELPR  + VP*0/.1 + V/.0        + 
SUPPORT/.32767,VPOS + NP/.0 + ICKES/.32767,PRNAME + 
V/.0 + VOTEFORJONES/.32767,VPOS,MAIN 

The routine SFORM then determines the quasi-logical 
form of the parsed sentence, i.e., 

All  + X/A  +  PHI/.1,A  +  P/.2,A 

(“All A such that PHI/.1,A is P/.2,A.”) 

in which 

PHI/.1 = NP*0/.0 + NP*2/.1 + ADJNCL/.0 + ONE/.32767,ADJN 
+ RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR + 
VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP*0/.0 
+ ICKES/.32767,PRNAME 

and 

P/.2 = VOTEFORJONES/.32767,VPOS,MAIN 

Each PHI, followed by the string that it denotes, is 
stored on Shelf 9. Also, each IND/.n, followed by the 
proper name that it denotes, is stored on Shelf 16; 
each P/.n (n less than 500), followed by the unary 
predicate that it denotes, is stored on Shelf 17; and 
each P/.n (n equal to or greater than 500), followed 
by the binary or ternary predicate that it denotes, is 
stored on Shelf 18. Shelf 17 is initialized with 

 P/.1 + ONE + P/.0 + IS 

so the unary predicate VOTEFORJONES is denoted by 
P/.2, whose numerical subscript is greater by one than 
that of the largest P already on Shelf 17. 

The routine LF converts the quasi-logical formula 
into a complete formula of functional logic, i.e., 

(A/Q X/A)((PHI/.1,A) IMPLIES/OP (P/.2,A)) 

The translation, however, is not finished until all the 
PHI's have been replaced by complete logical formu- 
lae. The PHI routine reads in PHI/.1,A + (etc.) from 
Shelf 9, and replaces it by 

((P/.1.A) AND/OP (PHI/.1,A)) 

in which 
P/.1 = ONE 

and 
PHI/.1=RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR + 

VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP*0/.0 
+ ICKES/.32767,PRNAME 

This substitution is made in the partially translated 
formula, which then becomes 

(A/Q X/A)(((P/.1,A)  AND/OP  (PHI/.1.A)) IMPLIES/OP 
(P/.2.A)) 

The routines SFORM and LF next convert PHI/.1,A into 
P/.3,A, in which 

P/.3  =  SUPPORTICKES 

so the complete translation of the first premiss, result- 
ing from Analysis II, is 

(A/Q  X/A)(((P/.1,A)   AND/OP   (P/.3,A))  IMPLIES/OP 
(P/.2,A)) 

Finally, the formula is simplified by eliminating the 
dummy term P/.1,A, yielding 

(A/Q  X/A)((P/.3,A)   IMPLIES/OP   (P/.2,A)) 

as the final version. 
Analysis III produces a more refined logical transla- 

tion of the first premiss. The words of the predicate, 
i.e., VOTE + FOR + JONES, are not compressed as they 
are in Analysis II, so the quasi-logical form of the 
parsed sentence is 

ALL   +   X/B   +   PHI/.1,B  +  P/.500   +   IND/.0 

in which 
PHI/.1 = NP*0/.0 + NP*2/.1 + ADJNCL/.0 + ONE/.32767,ADJN 

+ RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR + 
VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP/.0 
+ ICKES/.32767,PRNAME 

and 
P/.500 = SUPPORT 
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and 
IND/.0 = JONES 

whose logical translation is 
(A/Q X/B)((PHI/.1,B) IMPLIES/OP (P/.500 X/B IND/.0)) 

PHI/.1,B is next replaced by 

((P/.1,B) AND/OP (PHI/.1,B)) 

in which 

P/.1 = ONE 

and 
PHI/.1 = RELCL/.0 + RCL*2/.1 + WHO/.32767,RELPR + 

VP*0/.1 + V/.0 + SUPPORT/.32767,VPOS + NP/.0 + 
ICKES/.32767,PRNAME 

yielding the formula 
(A/Q  X/B)(((P/.1,B)  AND/OP   (PHI/.L,B))     IMPLIES/OP 
(P/.500 X/B IND/.0)) 

PHI/.1,B is next converted into P/.501 + X/B + IND/.1, 
and P/.1,B is eliminated, yielding the formula 

(A/Q  X/B)((P/.501 X/B  IND/.1)  IMPLIES/OP (P/.500  X/B 
IND/.0)) 

in which 

P/.501 = SUPPORT 

and 

IND/.1 = ICKES 

Since the first premiss contains no NP'S beginning with 
THE, Analysis IV gives the same result as Analysis III. 
This is also true of the remaining sentences of the argu- 
ment. The translations of the premises and conclusion, 
resulting from Analyses II and III, are given below. 
* * * * * 
First premiss 
II (A/Q X/A) ((P/.3,A/ IMPLIES/OP (P/.2,A)) 
III (A/Q X/B)((P/.501 X/B IND/.1) IMPLIES/OP  (P/.500 X/B 

IND/.0)) 

***** 
Second premiss 
II      (A/Q   X/D)((P/.5,D)   IMPLIES/OP   (P/.4,D)) 
III     (A/Q X/E)((P/.500 IND/.3 X/E) IMPLIES/OP  (P/.502 X/E 
IND/.2)) 

***** 
Third premiss 
II (P/.6 IND/.0) 
III (A/Q X/G)((P/.502 X/G IND/.4) IMPLIES/OP (NOT(P/.502 

IND/.0 X/G))) 

***** 
Fourth premiss 
II (P/.7 IND/.2) 
III (P/.502 IND/.2 IND/.4) 

***** 
Conclusion 
II (NOT(P/.3) IND/.3) 
III (NOT(P/.501 IND/.3 IND/.1)) 

***** 
The complete lexicon for the above argument is as 

follows. 
IND/.4 + KELLY + IND/.3 + ANDERSON + IND/.2 + HARRIS 
+ IND/.1 + ICKES + IND/.0 + JONES 

P/.7 + FRIENDOFKELLY + P/.6 + FRIENDOFNOONEWHO- 
FRIENDOFKELLY + P/.5 + ANDERSONVOTEFOR + P/.4 + 
FRIENDOFHARRIS + P/.3 + SUPPORTICKES + P/.2 + VOTE- 
FORJONES + P/.L + ONE + P/.0 + IS 

P/.502 + FRIENDOF + P/.501 + SUPPORT + P/.500 + VOTE- 
FOR 

After the program has completed all the functional 
logic analyses (i.e., II, III, and IV) for an input argu- 
ment, it selects one of them as the basis of the proof 
that will be attempted in Section DC of the program. 
In making this choice, the program makes a list of the 
terms in the premisses and conclusion, where a "term" 
may be a propositional letter (e.g., A/V, B/V, etc.), 
an individual name (e.g., IND/.0, IND/.1, etc.), or a 
unary,   binary,   or   ternary   predicate   (e.g.,   P/0,  P/.l, 
....   P/.500,   P/.501,   etc.).     It    then      searches      for 
repetition of terms between premisses and conclusion. 
The repetition of at least one term between the pre- 
misses and conclusion may be stated as a necessary 
condition of validity of a nontrivial argument, i.e., an 
argument with nonselfcontradictory premisses and non- 
tautological conclusion. If an analysis of an argument 
contains no repetition, then it is ruled out, but if it 
contains some repetition, then it is regarded as pro- 
viding the basis of a possible proof. In Analysis I, the 
repetition of just one term is sufficient to justify having 
a go at a proof in propositional logic; if the argument 
cannot be proven in propositional logic, the Wang 
algorithm will quickly determine this, and send the 
program on into Analyses II, III, and IV. For these last 
three analyses, something a little stronger is required 
than repetition of just one term. In fact, the program 
looks for the simplest analysis in which all the terms 
of the conclusion are repeated in the premisses. This 
criterion is still not strong enough, mainly because 
there are some arguments with short conclusions con- 
taining just a few terms, all of which are repeated in 
the premisses under Analysis II, but the arguments 
nevertheless require more refined analyses for the 
premisses. The program, therefore, looks for internal 
repetition within the premisses. The analysis that is 
finally selected as the basis for the attempted proof is 
the simplest analysis according to which all the terms 
of the conclusion are repeated in the premisses and 
according to which at least one term of the premisses 
is repeated in the premisses. If such an analysis can- 
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not be found, then the program settles for Analysis IV. 
The criterion as thus defined is adequate for all the 
examples that have been submitted to the program thus 
far. It seems neither too weak nor too strong, in that 
it takes account of the fact that some repetition of 
terms is a necessary condition of validity of a non- 
trivial argument, but it does not require 100 per cent 
repetition. It is, however, a purely pragmatic criterion, 
and there is no guarantee that it will always work, so 
we have designed the program in such a way that, in 
ease of failure of the criterion, the operator may specify 
an alternative analysis. In order to facilitate selection 
by the operator, should it be necessary, the formulae 
resulting from Analyses II, III, and IV, i.e., the output 
of Section DB, are written out into Channel B, whence 
they are read in at the start of DC. The formula selected 
by the program is stored first, and it is the one that will 
be tested in the absence of any contrary instructions 
by the operator. If the operator decides that the for- 
mula selected cannot be proven (the logical evaluation 
part of the program is a proof procedure rather than a 
decision procedure, and is therefore incapable of re- 
jecting invalid formulae, except in Analysis I), he 
may interrupt the evaluation, restart DC, and type in 
— .2+, —/.3+, or —/.4+ at the start, depending on 
which analysis he wishes the program to try. 

For the example that we have been considering, the 
propositional logic analysis, i.e., 

A. B. C. D. THEREFORE E. 

is rejected by the criterion, since there is no repetition 
at all between premisses and conclusion. In Analysis 
II, there are two terms in the conclusion, i.e., P/.3 and 
IND/.3, of which only the first recurs in the premisses, 
so Analysis II is also rejected by the criterion. Analysis 
III, however, is accepted by the criterion, since all 
three terms of the conclusion, i.e., IND/.1, IND/.3, and 
P .501, recur in the premisses, and several terms oc- 
cur more than once in the premisses; the formula re- 
sulting from Analysis III is in fact a theorem and is 
subsequently proven in Section DC. 

Once an analysis is selected, by the program or by 
the operator, the premisses and conclusion are com- 
bined into a single formula of conditional form, in 
which the conjunction of the premisses is taken to 
imply the conclusion. The method by which this is 
accomplished was described earlier in the section on 
propositional logic translation. If the formula pertains 
to functional logic, the additional step is performed of 
putting it into prenex normal form, in which all the 
quantifiers are on the left, and the scope of each 
quantifier is the entire formula to the right of it. The 
prenex normal form of a formula is required by the 
functional logic evaluation program. It is arrived at 
through the application of the PRNX routine, which 
is based upon the repeated application of the follow- 
ing standard set of logical equivalences, until all the 
quantifiers  are on  the left.   ('P' is any formula that con- 

tains no free occurrence of V; 'OP' may be 'AND', 'OR', 
or 'IMPLIES'; and 'Q' may be 'Q/ALL' or 'Q/SOME'.) 

P OP (QX)(FX) = (QX)(P OP FX) 
(AX) (FX) IMPLIES P = (EX) (FX IMPLIES P) 
(EX) (FX) IMPLIES P = (AX) (FX IMPLIES P) 
(QX)(FX) AND/OR P = (QX)(FX AND/OR P) 

Negated quantifiers are eliminated by the application 
of the pair of equivalences 

NOT(AX)(FX) = (EX)(NOT FX) 
NOT(EX)(FX) = (AX)(NOT FX) 

The PRNX routine operates as follows. 

OUTLINE OF THE PRNX ROUTINE 

Universal quantifiers, i.e., (A/Q X/A), (A/Q X/B), etc., 
are changed to Q/ALL,A, Q/ALL,B, etc. Existential quan- 
tifiers, i.e., (E/Q X/A), (E/Q X/B), etc., are changed to 
Q/SOME,A, Q/SOME,B, etc. Shelf 1 is for initial Q's. 

1. Start. Is first item in workspace a Q? 
1.1. Yes: Queue item onto Shelf 1; go to 1. 
1.2. No: Read up to first Q. 
 
1.21. Succeed: go to 2. 
1.22. Fail: queue workspace onto Shelf 1; Shelf 1 con- 

tains prenex formula; Done. 

2. (In the following, 'Q' refers  to the first Q in the 
workspace.) Is Q preceded by *(+NOT? 
2.1. Yes:  change  *(+NOT+Q/ALL   to Q/SOME+*( + 

NOT;  change  *(+NOT+Q/SOME to  Q/ALL+*( + 
NOT; go to 3. 

2.2. No: go to 3. 

3. Apply whichever one of the following rules is ap- 
propriate. 

((P) OP Q(R))  = Q((P) OP (R)); 
(Q/ALL(P) IMPLIES(R)) = Q/SOME((P) IMPLIES(R)); 
(Q/SOME (P) IMPLIES (R))  = Q/ALL ((P) IMPLIES (R)); 
(Q(P) AND/OR (R)) = Q((P) AND/OR (R)); 

go to 1. 

The prenex normal form of the formula resulting 
from Analysis III of our example is 

(E/Q X/B) (E/Q X/E)(E/Q X/G) ((((((P/.501 X/B IND/.1) 
IMPLIES (P/.500 X/B IND/.0)) AND ((P/.500 IND/.3 X/E) 
IMPLIES (P/.502 X/E IND/.2))) AND ((P/.502 X/G IND/.4) 
IMPLIES (NOT(P/.502 IND/.0 X/G)))) AND (P/.502 IND/.2 
IND/.4)) IMPLIES (NOT(P/.501 IND/.3 IND/.1))) 

The overall plan of Section DB, which translates the 
parsed sentences of the input arguments into logical 
notation according to Analyses II, III, and IV, is given 
below. 

OUTLINE OF SECTION DB 

Shelf 22 is input shelf for parsed sentences; Shelves 
19,  20,  and  21  are  output  shelves for storing transla- 
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tions resulting from Analyses II, III, and IV, respec- 
tively; Shelf 25 is for recording which analysis the 
program is in at a given time, and is initialized with 
'II+III+IV'; Shelf 10 is copy of input Shelf 22; Shelf 
9 records the PHI's and the material that they abbrevi- 
ate; Shelves 1, 12, and 24 are for storing translated or 
partially translated formulae. 

1. Start. Is anything on Shelf 25? 
1.1. Yes: put copy of Shelf 22 on Shelf 10; go to 2. 
1.2. No: Analyses II, III, and IV are finished; go to 8. 

2. Read in parsed sentence from Shelf 10. 
2.1. Succeed: go to 3. 
2.2. Fail: go to 7. 

3. Is program in Analysis II? 
3.1. Yes: compress all the words in the predicate (ex- 

cept NOT)   into  one word, and subscript it with 
/VPOS. If predicate is  positive, it will be of the 
form  V + $1/VPOS;  if negative,  it will be  of the 
form V+VNEG+$1/VPOS+NOT.  Go to 4. 

3.2. No: go to 4. 

4. Is program in Analysis III? 
4.1. Yes: if there is any noun phrase whose first word 

is THE, compress all the words in the noun phrase 
into one word, and   subscript it with /PRNAME; 
noun phrase will then be of the form NP + $1/ 
PRNAME; go to 5. 

4.2. No: go to 5. 

5. Enter SFORM, and determine quasi-logical form of 
parsed formula; enter LF, and determine logical trans- 
lation of quasi-logical formula; if any PHI's are created 
in SFORM, store them on Shelf 9, followed by the mate- 
rial that they abbreviate. Is Shelf 12 empty? 
5.1. Yes: store formula on Shelf 12; go to 6. 
5.2. No: formula is the logical translation of a certain 

PHI/.n; replace all occurrences of PHI/.n in the 
formula on Shelf 12 with copies of the formula in 
the workspace; go to 6. 

6. Read in next PHI from Shelf 9. 
6.1. Succeed: go to 5. 
6.2. Fail: transfer formula from Shelf 12 to Shelf 24; 

use ** to mark end of formula; go to 2. 

7. Combine formulae on Shelf 24 into a single formula 
of conditional form, in which the conjunction of the 
premisses implies the conclusion; store formula on 
Shelf 19, 20, or  21, depending on whether program is in 
Analysis II, III, or IV; delete first item on Shelf 25; go 
to 1. 

8. Apply selection criterion to formulae on Shelves 19, 
20, and 21 to decide which one is likeliest to yield the 
simplest proof; write out formulae into Channel B, with 
the selected   one first;  each formula is followed  by 
—/.n, where n is the number of the analysis that pro- 
duced the formula; done. 

The routines SFORM, LF, and PHI are the principal 
subroutines of DB. Instead of attempting to describe 
them verbally in detail, we shall reproduce the actual 
COMIT rules that embody these routines, accompanied 
by a paragraph or so of explanation in each case. The 
expression '$0', which occurs frequently in these three 
routines, is a feature of the time-sharing version of 
COMIT but is not explained in the COMIT manuals. It 
denotes the beginning or end of the workspace. 

SFORM ROUTINE 

(For translating parsed sentences into quasi-logical 
formulae) 

Shelf 1 is input shelf for sentence or part of sentence 
whose quasi-logical form is to be determined; Shelf 9 
is for PHI's; Shelf 11 is for variables X/A, X/B, etc.; 
Shelf 14 is output shelf; Shelf 15 records largest PHI 
currently on Shelf 9 (Shelf 15 is initialized with 
PHI/.0); Shelf 16 is for terms IND/.n; Shelf 17 is for 
terms P/.n (n less than 500) denoting unary predi- 
cates (Shelf 17 is initialized with P/.1+ONE+P/.0 + 
IS); Shelf 18 is for terms P/.n (n equal to or greater 
than 500) denoting binary and ternary predicates. 
SFORM $//*A1 1      * 
* $0 + VP*1=–/.1 + –/SVP1//*S10 2     SCOPE 
* $0 + NP + $1/PRNAME + $ = 3 + 4 + –/QSH14 //*SI 2,*A16 2,– 
*S10 3     INDCHECK 
* $0 + NP + NP*1 + $L/DET + $=4 + 5 //*Q14 1,*Q8 2,*N15 1   SF5 
* $0 + V + $1/VPOS = 3+ –/QSH14//*S10 2,*A17 2     P1CHECK 
* $0 + V+VNEG + $1/VPOS + NOT = 4 + 5+ –/QSH14 //*S4 2,– 
*S10 3,*A17 2     P1CHECK 
* $0 + VP*0 + V + IS + $ = P/.0 + 5 //*Q14 1,*Q1 2      SFORM 
* $0 + VP*0 + V + VNEG + IS + NOT + $ = P/.0,NOT + 7//*Q14 1,– 
*Q12      SFORM 
* $0 + VP*0 + V+$L/VPOS + $=4 + 5+ –/QSH14 //*Q1 2,$S10 3,– 
*A18 2     P2CHECK 
* $0 + VP*0 + V + VNEG + $1 + $1 + $ = 5 + 7+–/QSH14 + NOT //– 
*Q1 2,*S10 3,*A18 2,*S4 4     P2CHECK 
* $0 + IVP+$ +V+$1 + $0 = 3+VP*0 +4 +5 //*Q1 1 2 3 4,*N14 1,– 
*Q1 1     SFORM 
* $0 + IVP+$ + V+ $3+ $0= 3+VP*0 + 4 +5//*Q1 1 2 3 4,*N14 1,– 
*Q11SFORM 
* *X //*Q14 1      * 
* $1     Z 
SFO $//*A14 1      * 
* Y=      NV 
*     LF 
NV $ = X+1 //*N11 1      $ 
NV1 $1 + $ + Y + PHI+$ = 1+4 + 2 + L+4/$*1 + 5 //*Q14 3 4 5 6,–     
*A9 3     * 
* $0 + $1 + $1 + $ + 3=4 + 5/$*2//*X9     SF1 
OV$ + X = 2 + L + 2     NVI 
SF1 $//*A14 1      * 
* Y=      SF2 
* LF 
SF2 $0 + THE + X + PHI + P/.0,NOT + SOME + Y + PHI     NV 
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* $0 + THE + X + PHI + P/.0 + NO + Y + PHI     SF3 
*     SF4 
SF3 P/.0,NOT     OV 
*     NV 
SF4 $0+ $1/DET +PHI+ P/.0 +SOME+ Y + PHI     OV 
* $0 + $1/DET + X + PHI + P/.0 + NO + Y + PHI     OV 
* NV 
SF5 PHI= 1/.I1 + 1/.I1 //*S15 2     SF6 
* $=PHI/.0     SF5 
SF6 $=Y+1 + 1+ –/.1+ –/SF7//*Q14 1 2,*Q9 3,*S10 5,– 
•A8 5     SCOPE 
SF7 $//*A8 1,*Q1 1,*A7 1,*Q9 1     SFORM 
SVP1 $//*A8 1      * 
* $0 + PPCL + PPCL*2 + $L/PREP + $ = 4 + 5 //*Q2 1 2,*A7 1      * 
* $ + $1/VPOS = 1 + 2 + X//*Q1 1,*N2 3,*K2 3     * 
*  $1 + $ = 1/.32767,VPOS,MAIN + 2 //*Q1 1 2,*A2 1,– 
* Q1 1     SFORM 
INDCHECK $1 = 1/–$     * 
* $1 + $ + $1 +1 + $ = 3+ 2 + 3 + 4 + 5 //*S14 1,*Q16 2 3 4 5,– 
* N10 1     $ 
* $1 + $1 + $ = 2/.I1 + 2/.I1 + L + 2 + 3//*S14 1,*Q16 2 3 4 5,– 
* N10 1     $ 
* $1=IND/.0 + IND/.0+1 //*S14 1,*Q16 2 3,*N10 1     $ 
P1CHECK $1 = 1/–$     * 
* $1 + $ + $1 + 1 + $ = 3 + 2 + 3 + 4 + 5 //*Q17 2 3 4 5,– 
* N4  2     NCHECK 
* $1 + $1 + $ = 2/.I1 + 2/.I1 + L + 2 + 3 //*Q17 2 3 4 5,– 
* N4 2     NCHECK 
P2CHECK $1 = 1/–$      * 
* $1 + $ + $1 + 1 + $ = 3 + 2 + 3 + 4 + 5 //*Q18 2 3 4 5,– 
* N4 2     NCHECK 
* $1 +$1+$ =2/.I1+2/.I1 + L + 2 + 3//*Q18 2 3 4 5,– 
* N4 2     NCHECK 
* $1=P/.500 + P/.500 + 1 //*Q18 2 3,*N4 2     NCHECK 
QSH14   $//*N14  1,*Q14  1     SFORM 
NCHECK $1 + NOT=1/NOT //*S14  1,*N10 1      $ 
* $1 + $//*S14 1,*S4 2,*N10 1     $ 
SCOPE $0 + $1/.G0 + $1 = 2/.I.*3 + 3 //*Q7 2     SCOPE 
* $0 + $1/.0 + $ = 3//*Q8 1,*N10 1      $ 
* Z 

In the first and main section of the SFORM routine, 
the principal noun phrases and verb phrases of the 
parsed sentence are looked up, and replaced by ab- 
breviations. Proper names are replaced by terms IND/.n, 
other noun phrases are replaced by expressions of the 
form $l/DET+Y+PHI/.n, and verbs are replaced by 
terms P/.n (or P/.n/NOT) denoting unary, binary, or 
ternary predicates. The terms IND/.n and P/.n are de- 
termined from Shelves 16, 17, and 18. If a term is not 
found on its appropriate shelf, a copy of it is put 
there, and its numerical subscript /.n is increased by 
1. The terms PHI/.n abbreviate noun phrases minus 
their determiners; each PHI/.n, followed by the mate- 
rial that it abbreviates, is stored on Shelf 9, and its 
numerical subscript /.n is greater by 1 than that of 
the largest PHI already on Shelf 9. The rest of SFORM 
replaces the terms Y with the variables X/A, X/B, etc., 

from Shelf 11. In some cases, mainly those in which 
the main verb is P/.0 (IS) and is directly followed by 
SOME or NO, both PHI's in the formula are replaced by 
the same x; otherwise, the Y's are replaced by different 
x's. In either case, each PHI is given the literal subscript 
of its immediately preceding X. 

The program next enters the LF routine, which 
translates the quasi-logical formulae into fully paren- 
thesized formulae of functional logic. 

LF ROUTINE 

(For translating quasi-logical formulae into fully paren- 
thesized formulae of functional logic) 
Program uses Shelves 1 and 14 for storage of formulae 
or parts of formulae. 
LF ALL+$ + $1/NOT = SOME + 2 + 3     * 
* NO + $1 + NOT = ALL + 2 + 3/–NOT     * 
* $ I/NOT + ALL = 1 + SOME     * 
* $1/NOT + NO=1/–$,.*1 + SOME     * 
* P/.0 + NO = 1/NOT + SOME     * 
LF1 $0 + $1 + $1 + $0 = *( + 3 + 2 + *)  LF16 
* $0 + $1 + $1 + $1 + $0=*( + 3 + 2 + 4 + *)  LF16 
* $0+$1+$1+$1+P+ $0=*(+2+3+*) +*(+ *( +4 + *) + IA + *( + – 
5/$*3+ *) + *) LF2 
* $0 + $1 + $1 + $1 + $1 + $0=*( + 3 + 2 + 4 + 5+*)     LF16 
* $0+$1+P+$1+ $1+$1+$0=*(+4 +5+*)+ *( + *( + 6+*) + IA + – 
*( + 3 + 2 + 5+ *) + *)     LF2 
* $0+$1+$1+$1+P+$1+$0=*(+2+3+*) + *( + *( +4+ *) + IA + – 
*( + 5 + 3 + 6 + °) + *)     LF2 
* $0 + $1 + $1 + $1 + $1+$3+ $0+*(+2+3+*)+*( + *(+4 + *) + – 
IA + 3 + 5 + 6 //*Q14 1 2 3 4 5 6 7 8 9     LF1 
* $0+ $1+P + X +$1+$1+$1+$0=*(+5+6+*) + *( + *( + 7+*) + – 
IA+*( + 3 + 2 + 4 + 6 + *) + *)     LF2 
* $0+ $1+P + $1 + X + $1 + $1+$0=*(+4 +5+*)+*(+*(+6+*)+ – 
IA+*( + 3 + 2 + 5 + 7+*) + *)      LF2 
* $0 + $1+ $1+ $1+P+$1+ $1+$0=*(+2 + 3 + *) +*( + *( + 4 + – 
*) + IA+*( + 3 + 5 + 6 + 7+*) + *)     LF2 
* $0 + $1+P+ $1+ $1+ $1+ $3+$0=*(+4 + 5 + *) + *(+*( + 6 + – 
*) + IA + 2 + 3 + 5 + 7//*Q14 1 2 34 5 6 7 8 9     LF1 
* $0+ $1+ $1+ $1+P+$=*(+2+3+*)+ *( + *( +4 + *) + IA + 3 + – 
5 + 6 //*Q14 123456789     LF1 
LF2 $ = X+1 //*A14 1      * 
* $=–/.0 + 1 + 1 //*S14 3     * 
LF3 $1 + $ + IA=1/.I1     LF3 
* $1 + $ = 1      * 
LF4 $1/.G1 = 1/.D1 + *) //*Q14 2     LF4 
* $//*A14 1      * 
LF5 $ + ALL + $ + IA = 1 + A/Q + 3 + IMPLIES/OP //– 
*Q14 1 2 3 4      LF5 
* $ = X+1 //*A14 1      * 
LF6 $ + SOME + $ + IA = 1 + E/Q + 3 + AND/OP //– 
*Q14 1 2 3 4     LF6 
* $ = X+1 //*A14 1      * 
LF7 NO + $ + IA + $ = A/Q + 2 + IMPLIES/OP + *( + NOT + – 
4 + *)     LF7 
LF8 $ + ONLY+$ + IA = 1+2 + 3 + 4–/.1 //*Q14 1 2 3 4      LF9 
* LF11 
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LF9 $0 + $1 + *( = 2/.I1 + 3//*Q14 1 2     LF9 
* $0 + $1 + *) = 2/.DL + 3//*Q14 1 2     LF10 
* $1 + $1 //*Q14 1 2     LF9 
LF10 $0 + I1/.GO     LF9 
* $1 = 1 + *Q//*A14 1      * 
* *) + *Q = 2+L      * 
* ONLY + $ + $3 + IA + *(+ P/NOT + $ + *) + *Q = E/Q + 2 + – 
*( + NOT + 3 + *) + AND/OP + 5 + 6/ – NOT + 7 + 8     LF8 
* ONLY + $ + $3 + IA + *( + $ + *) + *Q = A/Q +2+5+6+7+– 
IMPLIES/OP + 3     LF8 
LF11 *( + THE + $1 + $3 + $1 + $1 + IA = 2 + 3 + 5 + 7 //*N11 4,– 
*Q14 1 2 3 4     LF11 
* //*X14      * 
LF12 THE + $1+$1+$1+$=*(+ E/Q + 2 + *) + *( + *( + 3 + *) + – 
AND/OP+ 5+*(+ A/Q + 4 + *) + *( + *( + *( + PHI/.*3,$°4 + *) + – 
IMPLIES/OP + *(+*=+2 + 4 +*) + *) + AND/OP + *) //– 
*Q14   28     LF12 
* $ = 1 + X //*A14 2     * 
LF13 *(+$1/Q+X+*)+ *( + *( + PHI + *) + $1/OP + *( + P/.0,NOT– 
+ 3 + 3 + *) + *) = 6 + NOT + 6 + 7 + 8 + 8      LF13 
LF14 *( + $1/Q + X + *)+*( + *( + PHI + *) + $1/OP + *( + P/.0– 
+ 3 + 3 + *)+*) = 6 + 7 + 8     LF14 
LF15 NOT+*( + $1/NOT+$ + *) = 3/–NOT + 4     LF15 
* NOT+*( + P + $+*) = 3/NOT + 4     LF15 
LF16 P/.0 = * = /$*1,–.     LF16 
Q $//*Q14 1     SH24CHECK 

The first five rules of the program perform a few 
simple verbal changes, such as elimination of double 
negatives, and conversion of a sentential form like 'ALL 
X/A IS/NOT X/B' into the logically more accurate form 
'SOME X/A IS/NOT X/B'. The second main section of the 
program, headed by the rule LF1, searches for a rule 
that applies to the sentential form of the sentence, and 
translates or partially translates it into logical notation, 
queuing the translated part onto Shelf 14, and in some 
cases leaving part of the formula behind in the work- 
space for further translation. The term 'IA' is used in 
this section to stand for 'IMPLIES/AND'. The rest of the 
program adjusts the parenthesization, decides whether 
IA is IMPLIES or AND, inserts negatives in sentences that 
contain NO, rearranges sentences contain ONLY into 
equivalent forms containing ALL, and performs a spe- 
cial set of operations on sentences containing THE so 
as to make explicit the fact that such sentences express 
the unique existence of objects possessing certain prop- 
erties. 

PHI ROUTINE 

(For selecting the  input phrases for  the  SFORM  and  LF 
routines) 

Shelf  13 is  input  shelf,  and is  initialized with first 
PHI+ .........on Shelf 9; Shelves 7, 8, and 26 are for 
temporary storage. 
PHI $//*A13 1      * 
* $1/ADJN + $ //*S26 2     PHI01 
* PHI02 

PHI01 RELCL +$ = 1 + 2 + X //*A26 3     PHI02 
* PPCL+$ = 1 + 2 + X //°A26 3     PHI02 
* $ = 1 + X//*A26 2     * 
* PHI+$ + $L/ADJN + $ = 1 + 3 + 4+ –/14PAR //*S13 3 1,– 
*S10 4,*A17 3     P1CHECK 
PHI02 $0 + PHI + RELCL + RCL*2 + $ = 2 + 4 + 5//*S13 1,– 
*Q7 2 3     PHI03 
* $0 + PHI + RELCL + RCL*1 + RCL*2 + $ = 2+ –/.1 + 5 + 6 + – 
–/PHI04 //*S13 1,*S10 5     SCOPE 
* $0 + PHI + PPCL + PPCL*2 + $ = 2 + 4 + 5 //*S13 1,– 
* Q7 2 3     PHI05 
* $0 + PHI + PPCL + PPCL*1 + PPCL*2 + $ = 2+ –/.1 + 5 + 6 + – 
–/PHI06 //*S13 1,*S10 5     SCOPE 
* PHI+$1      Z 
* PHI= //*S13 1      RPL01 
PHI03 $ = X + X //*N13 1,*A8 2,*S13 2 1,*A7 1     * 
* $2 + $ = 2 //*S7 1,*N25 1      * 
* $ = 1 + RC+1 //*S25 1,*K2 3     DAN 
PHI04 $ = X + X //*N8 1,*N8 2     * 
* RCL*3 + $1/CONJ     PHI03 
* Z 
PHI05 $ = X + X //*N13 1,*A8 2,*S13 2 1,*N25 1     * 
* $ = 1 + PP+1//*S25 1,*K2 3     DAN 
PHI06 $ = X + X //*N8 1,*N8 2     * 
* PPCL*3 + $1/CONJ     PHI05 
* Z 
DAN $1 //*L1     DAN1 
* Z 
* DAN1 PPII=      PPII 

PPIII=    PPIV 
PPIV=    PPIV 
RCII=     RCII 
RCIII=   RCIV 
RCIV= RCIV 

PPII $//*A7 1 RC201 
PPIV $//*A7 1 * 
* $1 + $1 + $ = *X + VP*0 + V + 2/–$,VPOS + 3//*Q14 1,– 
*Q1 2 3 4 5     SFORM 
RCII $//*N7 1      * 
* $1/VP     RCII 
* $ = 1 + X//*A7 2     * 
* $0 + $1 + $1/VPOS + NOT //*S4 4     RC201 
* VNEG + $1/VPOS + NOT + $0 //*S4 3     * 
RC201 $ + $L/.G32766 = 2 //*Q2 1     RC201 
* $ = X+ –/14PAR //*A2 1,*K1,*S10 2,*A17 2     P1CHECK 
RCIV $ = *X //*S14 1,*A7 1,*S1 1     SFORM 
NEWPHI $//*A9 1      * 
* PHI + $ + PHI + $ //*Q13 1 2,*Q9 3 4     PHI 
* PHI+$//*Q13 1 2      PHI 
* $//*A12  1      * 
* $ =*–*.THE – LOGICAL – TRANSLATION – IS*. – *. + 1 + 1 + – 
** //*WAL1,*WSL2,*Q1 3 4      * 
* $//*A2 1,*A3 1,*A4 1,*A5 1,*A6 1,*A7 1,*A8 1,*A9 1,*A12 1,– 
*A13 1,*A14 1,*A15 1,*A23 1,*A24 1,*N22 1     * 
* THEREFORE = 1 + 1 //*S1 1,*S22 2     * 
* $//*S22 1     H 
RPL01 $//*A24 1     * 
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* $ = 1 + 1//*S14 1,*S24 2,*N13 1      * 
8 $1 = 1/–. + 1 //*S13 2,*A14 2     * 
RPL02 $L + $ + P/.L500=L + 2 + 3/$*1 //*Q7 2 3     RPL02 
* $1 + $ = 1+X + 2//*A7 2     * 
RPL03 $1 + $ + *X = 1 + 2 + X/$*1 //*Q7 2 3      RPL03 
* $1 + $ = 2 //*Q7 1      * 
RPL04 $ = X + X+** + X //*N11 1,*A7 2,*A12 4      * 
RPL05 $1 + $ + ** + $ + *( + 1 + *) = 1 + 2 + 3 + 4 + 2 //– 
*Q12 4 5     RPL05 
* $1 + $ + ** + $ = 1 + 3 + 4 //*A12 2      * 
* $1=PHI/.*1      * 
* $1+$+1+$=1/$*3+2+3+ 4 //*S13 1,*Q12 2 3 4     RPL01 
* $1 + $ = 2 //*Q12 1,*A24 1      NEWPHI 
*     Z 
SH24CHECK $//*A24 1      * 
* $1 + $ = *(+1 + 2 + AND/P.CONJ + X + *) //*A14 5,– 
*Q24 1 2 3 4 5 6     SH12CHECK 
* $//*A14 1,*Q24 1      * 
SH12CHECK $//*N12 1      * 
*  $1 //*S12 1      PHI 
* $ //*A24 1,*S12 1     NEWPHI 

The first seven rules of the PHI routine deal with 
terms $1/ADJN that do not occur within a relative 
clause or prepositional phrase. Such terms are re- 
placed by terms p/.n (n less than 500) regardless of 
which analysis the program is in. The rules “PHI02” 
through "RCIV" deal with any relative clauses and prep- 
ositional phrases that the formula may contain. The 
treatment of such sequences does depend on the par- 
ticular analysis that the program is in. In Analysis II, 
all the words in a relative clause (minus the relative 
pronoun) or prepositional phrase are compressed to 
form a single term, which is subscripted with /VPOS. 
If the relative clause is negative, the $1/VPOS is fol- 
lowed by NOT.) The new term thus formed is replaced 
by a term p/.n (or P/.n,NOT), denoting a unary predi- 
cate. Thus, the relative clause 'who climb the hill' be- 
comes CLIMBTHEHILL/VPOS, and the prepositional 
phrase 'in the house' becomes INTHEHOUSE/VPOS, and 
the resulting terms are looked up on Shelf 17 in order 
to determine the P's that should replace them. Analy- 
ses III and IV may be treated together at this point in 
the program, since the analysis of definite descriptions, 
which is the only respect in which they differ, was per- 
formed at an earlier stage. Analyses III and IV treat 
relative clauses and prepositional phrases essentially as 
propositional functions; that is, a relative clause like 
'who climb the hill' (whose parsed form is RCL*2 + 
WHO/RELPR   +   VP*0   +   V   + CLIMB/VPOS + NP + 
NP*1   +  THE/DET  +  NP*0   + ADJNCL  +  HILL/ADJN)   is 
converted into '*X climb the hill' (i.e., *X + VP*0 + V + 
CLIMB/VPOS    +   NP    +   NP*1    +   THE/DET   +   NP*0    + 
ADJNCL + HILL/ADJN), and its quasi-logical form is de- 
termined from SFORM. Likewise, a prepositional phrase 
like 'in the house' (whose parsed form is PPCL*2 + 
IN/PREP  + NP  +  NP*1  +  THE/DET  +  NP*0  +  ADJNCL  
—   HOUSE/ADJN)   is converted into  '*X in the house' 

(i.e., *X +  VP*0   +   V   + IN/VPOS + NP + NP*1 + 
THE/DET  +   NP*0   +   ADJNCL   +   HOUSE/ADJN),  and  its 
quasi-logical form is also determined from SFORM. 
The initial preposition of a prepositional phrase is sub- 
scripted with /VPOS so that the SFORM routine will in- 
terpret it as a binary relation. This device avoids the 
necessity of adding to SFORM, a special set of rules 
dealing with prepositions and is purely a matter of pro- 
gramming convenience. The term '*X', which is used 
in the analysis of relative clauses and prepositional 
phrases, is replaced, as soon as the PHI under analysis 
has been completely translated, by a term 'X' bearing 
the same literal subscript as the PHI. The part of the 
routine following the rule “RCIV” is not strictly speak- 
ing part of the PHI routine, but is concerned with set- 
ting up Shelf 13, and with substituting the part of the 
formula that has just been translated in the appropriate 
places in the main formula. 

The program has successfully translated and proven 
a number of examples from I. M. Copi's Introduction 
to Logic and Symbolic Logic, and we present them be- 
low in summary form. Most of the examples (with the 
exception of “CIRCLE”) required a certain amount of 
pre-editing in order to make their sentences conform to 
the restrictions imposed by the program's grammar; 
for these examples we present the original version 
along with the pre-edited one, so that the reader may 
have an idea of the sort of rewording and paraphrasing 
that is necessary. For each example, the analysis that 
was chosen by the selection criterion as the basis of 
the proof is denoted by an asterisk. 

DULUTH 

If I buy a new car this spring or have my old car fixed, 
then I'll get up to Canada this summer and stop off in 
Duluth. I'll visit my parents if I stop off in Duluth. If 
I visit my parents they'll insist upon my spending the 
summer with them. If they insist upon my spending the 
summer with them I'll be there till autumn. But if I 
stay there till autumn then I won't get to Canada after 
all! So I won't have my old car fixed.9 

Pre-edited version: 

If I buy a new car or fix my old car then I'll get to 
Canada and stop in Duluth. If I stop in Duluth then 
I'll visit my parents. If I visit my parents then I'll stay 
in Duluth but if I stay in Duluth then I'll not get to 
Canada. Therefore I'll not fix my old car. 

* Analysis I: 
(((A/V) OR (B/V)) IMPLIES ((C/V) AND (D/V))) . ((D/V) 
IMPLIES (F/V)) . (((F/V) IMPLIES (H/V)) AND ((H/V) 
IMPLIES (C/V.NOT))) . THEREFORE (B/V,NOT) . 

Prenex version of selected formula: 

((((((A)OR(B) )IMPLIES( (C)AND(D)))AND((D)IMPLIES 
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(F)))AND(((F)IMPLIES(H))AND((H)IMPLIES(NOT(C))))) 
IMPLIES(NOT(B))) 

Lexicon: 

A/V = I buy some new car. 
B/V = I fix my old car. 
C/V = I getto Canada. 
D/V = I stopin Duluth. 
F/V = I visit my parents. 
H/v = I stayin Duluth. 

KELLY 

Whoever supports Ickes will vote for Jones. Anderson 
will vote for no one but a friend of Harris. No friend of 
Kelly has Jones for a friend. Therefore, if Harris is a 
friend of Kelly, Anderson will not support Ickes.8 

Pre-edited version: 

All who support Ickes will vote for Jones. Everyone 
whom Anderson will vote for is a friend of Harris. Jones 
is a friend of no one who is a friend of Kelly. Harris is 
a friend of Kelly. Therefore Anderson will not support 
Ickes. 

Analysis I: 

A/V. B/V. C/V. D/V. THEREFORE E/V. 

Analysis II: 
(A/Q X/A)((P/.3,A) IMPLIES (P/.2,A)) . (A/Q X/D) ((P/.5,D) 
IMPLIES (P/.4,D)) . (P/.6 IND/.0) . (P/.7 IND/.2) . THERE– 
FORE (NOT(P/.3) IND/.3) . 

* Analysis III: 
(A/Q X/B)((P/.501 X/B IND/.L) IMPLIES (P/.500 X/B IND/.0)) 
. (A/Q X/E)((P/.500 IND/.3 X/E) IMPLIES (P/.502 X/E 
IND/.2)) . (A/Q X/G)((P/.502 X/G IND/.4) IMPLIES 
(NOT(P/.502 IND/.0 X/G))) . (P/.502 IND/.2 IND/.4) .THERE– 
FORE (NOT(P/.501 IND/.3 IND/.1)) . 

Analysis IV: 
(A/Q X/C)((P/.501 X/C IND/.1) IMPLIES (P/.500 X/C IND/.0)) 
. (A/Q X/F)((P/.500 IND/.3 X/F) IMPLIES (P/.502 X/F 
IND/.2)) . (A/Q X/H)((P/.502 X/H IND/.4) IMPLIES 
(NOT(P/.502 IND/.0 X/H))) . (P/.502 IND/.2 IND/.4) . 
THEREFORE (NOT(P/.501 IND/.3 IND/.1)). 

Prenex form of selected formula: 
(E/Q X/B)(E/Q X/E)(E/Q X/G) ((((((P/.501 X/B IND/.1) 
IMPLIES (P/.500 X/B IND/.0)) AND ((P/.500 IND/.3 X/E) 
IMPLIES (P/.502 X/E IND/.2))) AND ((P/.502 X/G IND/.4) 
IMPLIES (NOT(P/.502 IND/.0 X/G)))) AND (P/.502 IND/.2 
IND/.4)) IMPLIES (NOT(P/.501 IND/.3 IND/.1))) 

Lexicon: 

A/V = All one who support Ickes votefor Jones. 
B/V = All one whom Anderson votefor friendof Harris 
C/V  = Jones friendof no one who friendof Kelly. 
D/V = Harris friendof  Kelly. 
E/V = Anderson support not Ickes. 
IND/.4 + KELLY + IND/.3 + ANDERSON + IND/.2 + HARRIS 
+ IND/.L + ICKES + IND/.0 JONES 
P/.7   +  FRIENDOFKELLY +  P/.6  +   FRIENDOFNOONEWHO 
FRIENDOFKELLY  +  P/.5 +  ANDERSONVOTEFOR  +  P/.4  + 
FRIENDOFHARRIS  +  P/.3 +  SUPPORTICKES  + P/.2 + VOTE 
FORJONES 
P/.502  + FRIENDOF  + P/.501  +  SUPPORT  +    P/.500    + 
VOTEFOR 

CIRCLE 

All circles are figures. Therefore all who draw circle 
draw figures.2 

Analysis I: 

A/V.  THEREFORE B/V. 

Analysis II: 
(A/Q X/A)((P/.2,A) IMPLIES (P/.3,A)) . THEREFORE (A/Q 
X/D)((P/.5,D) IMPLIES (P/.4.D)) . 

Analysis III: 
(A/Q X/B)((P/.2,B) IMPLIES (P/.3,B)) . THEREFORE (A/Q 
X/E)((E/Q X/G)((P/.2,G) AND (P/.500 X/E X/G)) IMPLIES 
(E/Q X/F)((P/.3,F) AND (P/.500 X/E X/F))) 

*Analysis IV: 
(A/Q X/C)((P/.2,C) IMPLIES (P/.3,C)) . THEREFORE (A/Q 
X/H)((E/Q X/J)((P/.2,J) AND (P/.500 X/H X/J)) IMPLIES 
(E/Q X/I)((P/.3,I) AND (P/.500 X/H X/I))) 

Prenex form of selected formula: 
(E/Q X/C) (A/Q X/H) (A/Q X/J) (E/Q X/I) (((P/.2,C) IMPLIES 
(P/.3,C)) IMPLIES (((P/.2,J) AND (P/.500 X/H X/J)) IMPLIES 
((P/.3,I) AND (P/.500 X/H X/I)))) 

Lexicon: 

A/V = All circle is some figure. 
B/V = All who draw some circle draw some figure. 
P/.5 + DRAWSOMECIRCLE + P/.4 + DRAWSOMEFIGURE + 
P/.3 + FIGURE + P/.2 + CIRCLE 

P/.500 + DRAW 

PROFESSOR 

There is a professor who is liked by every student 
who  likes  any  professor  at  all.   Every  student likes 
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some professor or other. Therefore there is a professor 
who is liked by all students.13 

Pre-edited version: 

There is a professor whom every student who likes 
some professor likes. Every student likes some profes- 
sor. Therefore there is a professor that all students like. 

Analysis I: 

A/V. B/V. THEREFORE C/V. 

Analysis II: 
(E/Q   X/A)((P/.2,A)  AND  (P/.3,A))  .   (A/Q   X/H) ( (P/.4,H) 
IMPLIES  (P/.5,H))  .  THEREFORE  (E/Q X/M) ((P/.2,M)  AND 
P/.6,M))   . 

*Analysis III: 
(E/Q   X/B)((P/.2,B)   AND    (A/Q   X/C) (((P/.4,C)    AND   E/Q 
X/D)((P/.2,D)  AND (P/.500 X/C X/D))) IMPLIES  (P/.500 X/C 
X/B)))  .  (A/Q X/I)((P/.4,I)  IMPLIES  (E/Q X/J) ( (P/.2,J)  AND 
(P/.500 X/I   X/J)))  .  THEREFORE  (E/Q  X/N) ( (P/.2,N)  AND 
(A/Q X/O)((P/.4,O) IMPLIES   (P/.500 X/O X/N)))  . 

Analysis IV: 
(E/Q X/E)((P/.2,E) AND (A/Q X/F) (((P/.4,F) AND (E/Q 

X/G)((P/.2,G) AND (P/.500 X/F X/G))) IMPLIES (P/.500 X/F 
X/E))) . (A/Q X/K)((P/.4,K) IMPLIES (E/Q X/L) ((P/.2,L) 
AND (P/.500 X/K X/L))) . THEREFORE (E/Q X/P) ((P/.2,P) 
AND (A/Q X/Q)((P/.4,Q) IMPLIES (P/.500 X/Q X/P))) . 

Prenex form of selected formula: 
(A/Q    X/B)(E/Q  X/C) (E/Q   X/D) (E/Q    X/I) (A/Q    X/J) (E/Q 
X/N) (A/Q  X/O)((((P/.2,B)  AND   (((P/.4,C)   AND    ((P/.2,D) 
AND  (P/.500 X/C X/D))) IMPLIES  (P/.500  X/C X/B)))   AND 
((P. .4,I) IMPLIES  ((P/.2,J)  AND (P/.500 X/I X/J))))  IMPLIES 
((P .2,N) AND ((P/.4,O)  IMPLIES   (P/.500 X/O X/N)))) 

Lexicon: 

A/V =  Some one is some professor whom all student 
who like some professor like. 

B/V = All student like some professor. 
C/V = Some  one is some professor that all student 

like. 
P/.6 – ALLSTUDENTLIKE + P/.5 + LIKESOMEPROFESSOR + 
P/.4 + STUDENT + P/.3 + ALLSTUDENTWHOLIKESOMEPRO- 
FESSORLIKE + P/.2 + PROFESSOR 

P/.500 + LIKE 

RED 
It is a crime to sell an unregistered gun to anyone. All 
the weapons that Red owns were purchased by him 
from either Lefty or Moe.    So if one of Red's weapons 

is an unregistered gun, then if Red never bought any- 
thing from Moe, Lefty is a criminal.14 

Pre-edited version: 

Everyone who sells an unregistered gun to someone 
is a criminal. Lefty sold all the weapons that Red owns 
to Red. Red owns a weapon that is an unregistered 
gun. Therefore Lefty is a criminal. 

Analysis I: 

A/V. B/V. C/V. THEREFORE D/V. 

Analysis II: 
(A/Q X/A)((P/.2,A) IMPLIES (P/.3,A)) . (P/.6 IND/.0) . (P/.8 
IND/.1) . THEREFORE (P/.3 IND/.0) . 

* Analysis III: 
(A/Q X/B) ((E/Q X/C)(((P/.4,C) AND (P/.5,C)) AND (E/Q 
X/D)(P/.500 X/B X/C X/D)) IMPLIES (P/.3,B)) . (A/Q 
X/H) ( ( (P/.7,H) AND (P/.501 IND/.L X/H)) IMPLIES (P/.500 
IND/.0 X/H IND/.1)) . (E/Q X/J) ( ((P/.7, J) AND ((P/.4,J) 
AND (P/.5,J))) AND (P/.501 IND/.1  X/J)) . THEREFORE (P/.3 
IND/.0) . 

Analysis IV: 
(A/Q X/E)((E/Q X/F)(((P/.4,F) AND (P/.5,F)) AND (E/Q 
X/G)(P/.500 X/E X/F X/G)) IMPLIES (P/.3,E)) . (A/Q 
X/I)(((P/.7,I) AND (P/.501 IND/.1 X/I)) IMPLIES (P/.500 
IND/.0 X/I IND/.1)) . (E/Q X/K) (((P/.7,K) AND ((P/.4,K) 
AND (P/.5,K))) AND (P/.501 IND/.1 X/K)) . THEREFORE 
(P/.3 IND/.0) . 

Prenex form of selected formula: 
(E/Q X/B) (E/Q X/C) (E/Q X/D) (E/Q X/H) (A/Q X/J) 
(((((((P/.4,C) AND (P/.5,C)) AND (P/.500 X/B X/C X/D)) 
IMPLIES (P/.3,B)) AND (((P/.7,H) AND (P/.501 IND/.1 X/H)) 
IMPLIES (P/.500 IND/.0 X/H IND/.1))) AND (((P/.7,J) AND 
((P/.4,J) AND (P/.5,J))) AND (P/.501 IND/.L X/J))) IMPLIES 
(P/.3 IND/.0)) 

Lexicon: 

A/V = All one who sell some unregistered gun to 
some one is some criminal. 

B/V = Lefty sell all weapon that Red own to Red. 
C/V = Red own some weapon that is some unregis- 

tered gun. 
D/V = Lefty is some criminal. 
IND/.1   + RED  +  IND/.0  +  LEFTY 
P/.8+ OWNSOMEWEAPONTHATISSOMEUNREGISTEREDGUN + 
P/.7 + WEAPON  +   P/.6   + SELLALLWEAPONTHATREDOWN– 
TORED +  P/.5  +  GUN  +  P/.4  +   UNREGISTERED   +   P/.3   + 
CRIMINAL +  P/.2 + SELLSOMEUNREGISTEREDGUNTOSOME- 
ONE 

P/.501   +  OWN   +  P/.500   +  SELLTO 
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DESK 

Everything on my desk is a masterpiece. Anyone who 
writes a masterpiece is a genius. Someone very obscure 
wrote some of the novels on my desk. Therefore some- 
one very obscure is a genius.15 

Pre-edited version: 

Everything on my desk is a masterpiece. Everyone 
who writes a masterpiece is a genius. Some obscure 
one wrote some of the novels on my desk. Therefore 
some obscure one is a genius. 

Analysis I: 

A/V. B/V. C/V. THEREFORE D/V. 

Analysis II: 
(A/Q X/A)((P/.2,A) IMPLIES (P/.3,A)) . (A/Q X/F) ((P/.6,F) 
IMPLIES (P/.7,F)) . (E/Q X/K) ((P/.9,K) AND (P/.8,K)) . 
THEREFORE (E/Q X/R) ((P/.9,R) AND (P/.7,R)) . 

*Analysis III: 
(A/Q X/B)((E/Q X/C)(((P/.4,C) AND (P/.5,C)) AND (P/.500 
X/B X/C)) IMPLIES (P/.3,B)) . (A/Q X/G)((E/Q X/H) ((P/.3,H) 
AND (P/.501 X/G X/H)) IMPLIES (P/.7,G)) . (E/Q X/L) 
((P/.9,L) AND (E/Q X/M) (((P/.10,M) AND (E/Q X/N) 
(((P/.4,N) AND (P/.5,N)) AND (P/.500 X/M X/N))) AND 
(P/.501 X/L X/M))) . THEREFORE (E/Q X/S) ((P/.9,S) AND 
(P/.7,S)) . 

Analysis IV: 
(A/Q X/D)((E/Q X/E)(((P/.4,E) AND (P/.5,E)) AND (P/.500 
X/D X/E)) IMPLIES (P/.3,D)) . (A/Q X/I)((E/Q X/J) ((P/.3,J) 
AND (P/.501 X/I X/J) IMPLIES (P/.7,I)) . (E/Q X/O) ((P/.9,O) 
AND (E/Q X/P)(((P/.10,P) AND (E/Q X/Q) (((P/.4,Q) AND 
(P/.5,Q)) AND (P/.500 X/P X/Q))) AND (P/.501 X/O X/P))) . 
THEREFORE (E/Q X/T) ((P/.9,T) AND (P/.7,T)) . 

Prenex form of selected formula: 
(E/Q X/B) (E/Q X/C) (E/Q X/G) (E/Q X/H) (A/Q X/L) (A/Q 
X/M) (A/Q X/N) (E/Q X/S) (((((((P/.4,C) AND (P/.5,C)) AND 
(P/.500 X/B X/C)) IMPLIES (P/.3,B)) AND (((P/.3,H) AND 
(P/.501 X/G X/H)) IMPLIES (P/.7,G))) AND ((P/.9,L) AND 
(((P/.10,M) AND (((P/.4,N) AND (P/.5,N)) AND (P/.500 X/M 
X/N))) AND (P/.501 X/L X/M)))) IMPLIES ((P/.9,S) AND 
(P/.7,S))) 

Lexicon: 

A/V = All one on my desk is some masterpiece. 
B/V = All one who write some masterpiece is some 

genius. 
C/V = Some obscure  one write  some novel on my 

desk. 

D/V = Some obscure one is some genius. 

P/.10 + NOVEL + P/.9 + OBSCURE + P/.8 + WRITESOME– 
NOVELONSOMEMYDESK + P/.7 + GENIUS + P/.6 + WRITE– 
SOMEMASTERPIECE + P/.5 + DESK + P/.4 + MY + P/.3 + 
MASTERPIECE + P/.2 + ONSOMEMYDESK 

P/.501   + WRITE +  P/.500  +  ON 

TAPPAN 

The architect who designed Tappan Hall designs only 
office buildings. Therefore Tappan Hall is an office 
building.16 

Pre-edited version: 

The architect who designed Tappan-Hall designs only 
office-buildings. Therefore Tappan-Hall is an office- 
building. 

Analysis I: 

A/V. THEREFORE B/V. 

Analysis II: 

(P/.2 IND/.0)  . THEREFORE  (P/.3 IND/.1)  . 

Analysis III: 
(A/Q X/A)((P/.500 IND/.0 X/A) IMPLIES (P/.3,A) . THERE– 
FORE (P/.3 IND/.1) . 

*Analysis IV: 

(E/Q X/B) (((P/.4,B) AND (P/.500 X/B IND/.L)) AND (A/Q 
X/D)((((P/.4,D) AND (P/.500 X/D IND/.L)) IMPLIES (* = 
X/B X/D)) AND (A/Q X/C)((P/.500 X/B X/C) IMPLIES 
(P/.3,C)))) .THEREFORE (P/.3 IND/.1) . 

Prenex form of selected formula: 

(A/Q X/B) (E/Q X/D) (E/Q X/C) ((((P/.4,B) AND (P/.500 X/B 
IND/.1)) AND ((((P/.4,D) AND (P/.500 X/D IND/.1)) 
IMPLIES (*= X/B X/D)) AND ((P/.500 X/B X/C) IMPLIES 
(P/.3,C)))) IMPLIES (P/.3 IND/..1)) . 

Lexicon: 

A/V = The architect who design Tappan-Hall design 
only office-building. 

B/V = Tappan-Hall is some office-building. 

IND/.1  +   TAPPAN-HALL   +  IND/.0   + 
THEARCHITECTWHODESIGNTAPPAN-HALL 
P/.4   +  ARCHITECT + P/.3  + OFFICE-BUILDING   +   P/.2   + 
DESIGNONLYOFFICE-BUILDING 

P/.500   +   DESIGN 
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The running times in seconds for the preceding ex- 
amples are listed below. 

Example DA DB DC         Total 
(parsing)      (translation)      (proof)     time 

Duluth 63 — — 63 
Kelly 68 22 11 101 
Circle 163 9 7 179 
Professor 162 15 39 216 
Red 244 16 30 290 
Desk 133 32 39 204 
Tappan 43 7 10 60 

The reason for the blanks in Sections DB and DC of 
DULUTH is that the argument was parsed, translated, 
and proven in Section DA. The parsing and translation 
took 58 seconds, and the proof by the Wang algorithm 
took 5 seconds. For all the problems, it will be noted 
that the parsing consumed by far the greatest amount 
of time. A more efficient parsing system, therefore, is 
essential if the program is to become a really practical 
tool for logical analysis. A running time of five or six 
minutes is intolerable for two reasons: (1) at a peak 
hour of time-sharing usage, this amount of machine 
time is apt to consume twenty or thirty minutes of ac- 
tual time at the console, and (2) the time allotments 
for most MAC users have recently been reduced to 
twenty or thirty minutes per shift per month (the 
above data, fortunately, were obtained before the re- 
duced quotas were assigned). The large amount of 
time consumed by DA, however, is part of the price one 
pays for permitting syntactic homonymy and amphib- 
oly. An earlier version of the program parsed the in- 
put sentences far more rapidly, but it required that 
each word be assigned a unique syntactic category in 
an a priori fashion, and its grammar was considerably 
more simplified in other respects than that employed 
by the present version of the program. 

Three sentences of the input arguments were found 
to be amphibolous, and the choice of parsing was made 
by the operator at the console. In the CIRCLE example, 
the sentence 'All who draw circles draw figures' was 
transformed into 'All who draw circle draw figure', 
which admitted of two nonsentential and five sentential 
parsings, i.e., 

SNOVP +  NP  +  NP*1  +  ALL/DET  +  NP*0   +   NP*2   + 
ADJNCL  +  ONE/ADJN + RELCL + RCL*2 +   WHO/RELPR 
+ IVP + NP +   NP*0  +  ADJNCL +  ACL*0 + DRAW/ADJN 
+ ADJNCL  +  ACL*0  +    CIRCLE/ADJN    +    ADJNCL    + 
DRAW/ADJN  +   V +  FIGURE /VPOS   +   **/.1 

SNOVP +  NP  + NP*1  +  ALL/DET   +   NP*0   +   NP*2   + 
ADJNCL + ONE/ADJN + RELCL + RCL*2   +   WHO/RELPR 
+ VP*0  + V  + DRAW/VPOS + NP +  NP*0   +   ADJNCL  + 
ACL*0  +  CIRCLE/ADJN +  ADJNCL + ACL*0   +   DRAW/ 
ADJN   +   ADJNCL   +   FIGURE/ADJN   +   **/.2 

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL + 
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + IVP + 
NP + NP*0 + ADJNCL + DRAW/ADJN + V + CIRCLE/ 
VPOS + VP*0 + V + DRAW/VPOS + NP + NP*0 + 
ADJNCL + FIGURE/ADJN + **/.3 
S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL 
+ ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0 
+ V + DRAW/VPOS + NP + NP*0 + ADJNCL + CIRCLE/ 
ADJN  +  VP*0  +  V + DRAW/VPOS   +    NP    +    NP*0   + 
ADJNCL   +   FIGURE/ADJN   +   **/.4 
S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL + 
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + V + 
DRAW/VPOS + VP*0 + V + CIRCLE/VPOS + NP + NP*0 
+ ADJNCL + ACL*0 + DRAW/ADJN + ADJNCL + 
FIGURE/ADJN + **/.5 
S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL 
+ ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + IVP + 
NP + NP*0 + ADJNCL + ACL*0 + DRAW/ADJN + 
ADJNCL + CIRCLE/ADJN + V + DRAW/VPOS + V + 
FIGURE/VPOS + **/.6 

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL 
+ ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0 
+ V + DRAW/VPOS + NP + NP*0 + ADJNCL + ACL*0 
+ CIRCLE/ADJN + ADJNCL + DRAW/ADJN + V + 
FIGURE/VPOS + **/.7 

The fourth analysis was selected by the operator, since 
it is clearly necessary in this example to treat 'draw' as 
a verb and 'circle' and 'figure' as nouns. 

In the RED example, the sentence 'Everyone who 
sells an unregistered gun to someone is a criminal' was 
transformed into 'All one who sell some unregistered 
gun to some one is some criminal', which admitted of 
two sentential parsings, i.e., 

S + NP + NP*L + ALL/DET + NP*0 + NP*2 + ADJNCL + 
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*1 + 
VP*0 + V + SELL/VPOS + NP + NP*1 + SOME/DET + 
NP*0 + ADJNCL + ACL*0 + UNREGISTERED/ADJN + 
ADJNCL + GUN/ADJN + PPCL + PPCL*2 + TO/PREP + 
NP + NP*1 + SOME/DET + NP*0 + ADJNCL + ONE/ADJN 
+ VP*0 + V + IS/VPOS + NP + NP*1 + SOME/DET + 
NP*0 + ADJNCL + CRIMINAL/ADJN – **/.1 

S + NP + NP*1 + ALL/DET + NP*0 + NP*2 + ADJNCL + 
ONE/ADJN + RELCL + RCL*2 + WHO/RELPR + VP*0 + 
V + SELL/VPOS + NP + NP*1 + SOME/DET + NP*0 + 
NP*2 + ADJNCL + ACL*0 + UNREGISTERED/ADJN + 
ADJNCL + GUN/ADJN + PPCL + PPCL*2 + TO/PREP + 
NP + NP*1 + SOME/DET + NP*0 + ADJNCL + ONE/ADJN 
+ VP*0 + V + IS/VPOS + NP + NP*1 + SOME/DET + 
NP*0 + ADJNCL + CRIMINAL/ADJN + **/.2 

The first analysis was selected by the operator, since 
it links the prepositional phrase 'to someone' with 'sell' 
rather than with 'gun'. 

In the DESK example, the sentence 'Some obscure one 
wrote  some  of the novels on my desk' was transformed 
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into 'Some obscure one write some novel on my desk', 
which admitted of two sentential parsings, i.e., 

S + NP + NP*1 + SOME/DET + NP*0 + ADJNCL + ACL*0 
+ OBSCURE/ADJN + ADJNCL + ONE/ADJN + VP*1 + 
VP*0 + V + WRITE/VPOS + NP + NP*1 + SOME/DET + 
NP*0 + ADJNCL + NOVEL/ADJN + PPCL + PPCL*2 + 
ON/PREP + NP + NP*0 + ADJNCL + ACL*0 + MY/ADJN 
+ ADJNCL + DESK/ADJN + **/.1 

S + NP + NP*1 + SOME/DET + NP*0 + ADJNCL + 
ACL*0 + OBSCURE/ADJN + ADJNCL + ONE/ADJN + VP*0 
+ V + WRITE/VPOS + NP + NP*1 + SOME/DET + NP*0 
+ NP*2 + ADJNCL + NOVEL/ADJN + ACL*0 + MY/ADJN 
+ ADJNCL + ACL*0 + MY/ADJN + ADJNCL + DESK/ADJN 
+ **/.2 

This example is analogous to the preceding one, in that 
the amphiboly results from the question of whether a 
prepositional phrase should be linked with a directly 
preceding noun or with a verb occurring earlier on in 
the sentence. In this case, however, the second analy- 
sis was selected, since the operator knew that the 
prepositional phrase 'on my desk should be linked with 
'novel' rather than with 'write'. It could be argued that 
the amphibolies of the first two examples are some- 
what artificial, in that they result merely from the 
limited nature of the grammar and do not really per- 
tain to the original English sentences. In the third 
example, however, the amphiboly appears to be more 
genuine, since it is quite possible that the sentence 
could be referring to novels being written on my desk. 
In the next section, we shall discuss the logical eval- 
uation part of the program. 

Methods of Logical Evaluation 

As pointed out earlier, the propositional logic formula 
produced by the program are tested by the Wang 
algorithm, which is included in Section DA, and the 
functional logic formulae are proven in Section DC by 
a method based on the one-literal clause rule of Davis- 
Putnam and the matching algorithm of Guard. Our 
COMIT version of the Wang algorithm is reproduced 
below. 

THE  WANG PROPOSITIONAL LOGIC  ALGORITHM 

COM WANG 
RCR $=–*.–TYPE–IN–FORMULA*. //*WAL1     * 
* $//*RCR1      * 
**.=0     * 
* $ + *–+$ //*Q9 1 2 3     SUB 
* $ = *–+1 //*Q9 1 2     * 
SUB $//*N9 1      * 
* $1 //*L1     SUB1 
* $//*A2 1     COM 
–SUB1 B = 1/ZB,OP//*Q2 1 SUB 
             C = 1/ZC,OP//*Q2 1 SUB 
             D=1/ZD,OP//*Q2 1 SUB 

F = 1/ZF,OP //*Q2 1     SUB 
I = 1/ZI,OP //*Q2 1     SUB 
* – = //*Q2 1      SUB 
, = 1/OP //*Q2 1      SUB 

* $1 = 1/V //*Q2 1      SUB 
WFF $1 + $ + *–+$ =1+2+3+4+–/WFF1+ –/S3 //*Q8 1 2,– 
*Q6 3 4,*S10 5 6     SCOPE 
*     WFF2 
WFF1 $ = X + X //*A7 1,*A6 2      * 
WFF2 $+*–+$1+$=1+2+3+4+ –/WFF3+ –/S3 //*Q6 1 2,– 
*Q8 3 4,*S10 5 6     SCOPE 
*     COM2 
WFF3 $ = X + X //*A6 1,*A7 2     COM2 
SCOPE $ = M/.L //*S7 1      * 
* $//*N8 1      * 
* F = //*Q7 1     S1 
* $1/OP //*Q7 1,*N7 1      S4 
* $1/V //*Q7 1,*N7 1      S2 
* $=–*–THE–FORMULA –IS– DEFECTIVE – THERE – ARE – 
* TOO–MANY–OPERATORS*.//*WAL1,*A7 1,*WSL1   END 
S2 $1 = 1/.D1     * 
* $1/.G0 //*S7 1     S1 
* $//*N10 1      $ 
S3 $//*A8 1      * 
* $1 + $=–*– THE –FORMULA– IS – DEFECTIVE – THERE – 
– ARE – TOO – MANY – VARIABLES*. + 1 + 2 //*WAL1,– 
*WSL2 3     END 
* $//*N10 1      $ 
S4 $1 = 1/.I1 //*S7 1     S1 
COM $ + , + $ + *– //*Q2 2      COM 
* $ + *– //*Q2 1 2     * 
COM1 $ + ,//*Q2 2     COM1 
* $//*Q2 1,*A2 1     WFF 
COM2 $ + ,= 1 //*Q2 1      COM2 
* $//*Q2 1,*A2 1     TEST 
TEST $ = *.–+1 + 1 //*WAL1 2      * 
* $ + $1/OP+$=1+2+2+ 3+ –/PAREN //*Q7 1 2,*S10 3 5,– 
*Q8 4      SCOPE 
P1 $1+ $ + *–+$ + 1      VALID 
* $1 + $ + *–//*Q7 1      P1 
* $=X+1 //*A7 1      * 
* $=–*. –FORMULA– IS –INVALID*. //*WAL1      END 
VALID $ = X+1 //*A7 1      * 
* $= – *. –VALID*. //*WAL1,*A9 1      * 
* $1 + $ + ** + $ = L + 2 + 4//*S9 3     TEST 
* $=–*.–FORMULA–IS–VALID*.//*WAL1      END 
PAREN $ = *) //*Q7 1,*N10 1      * 
* F=1 + X + X//*A7 2,*A8 3     $ 
* $=–/PAREN1 + L //*S10 2 1     SCOPE 
PAREN1 $ = X + X+*) + X //*N10 1,*A7 2,*A8 4     $ 
ZF $1 = 0     * 
P2A $ + * –+$ + F + *) = 5 +1 + 2 + 3     TEST 
P2B F+$ + *) + $ + *–+$=4 + 5 + 6 + 2     TEST 
ZC $1 = 0     * 
P3A $ +*–+$+C+$+*)+$+*)+$=1+2+3+5+9+1+2+ 3 + – 
7 + 9+**//*S9 11 10 9 8 7 6     TEST 
P3BC + $ + *) + $ + *) = 2 + 4     TEST 
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ZD $1 = 0     * 
P4A *–+$ + D + $ + *) + $+*) = 1 + 2 + 4 + 6     TEST 
P4B $+D+$+*) + $ + *) +$+*–+$=L+3+7+8+9+L+5+7+– 
8+9 + ** //*S9 11 10 9 8 7 6     TEST 
ZI $1 = 0      * 
P5A $ +*–+$+1+$+*)+$+*)+ $=1+5+ 2+3 + 7 + 9     TEST 
P5B $ +1+$+*)+$+*)+$+*–+$ =1+5+7+8+9+1+7+ 8 + – 
9+3 + **//*S9 11 10 9 8 7 6     TEST 
ZB S1=0      * 
P6A $+*–+$+B+$+*)+$+*)+$=5+1+2+3+7+ 9 + 7+1 + – 
2+3+5+9+** //*S9 13 12 11 10 9 8 7     TEST 
P6B $+ B+$+*)+$+*)+$+*–+$=3+5+1+7+8+9+1 + 7 + – 
8+9 + 3 + 5 + ** //*S9 13 12 11 10 9 8 7     TEST 
END * 

END 

At the start of the program, the operator types 
in a formula in the required Polish notation, e.g., 
'ICTPFQBPQ'. The COMIT input mode "format c" that 
the program employs then expands the formula, adding 
a '*.' at the end; the sample formula thereby becomes 
'I — C+F + P + F + Q + B + P + Q + *.'. The 
program then deletes the final '*.', adds a '*—' at the 
left of the workspace if the formula does not already 
contain this symbol, and provides the individual sym- 
bols with appropriate subscripts. The letters 'B', 'c', 
'D', 'F', and 'I', which stand for 'iff', 'and', 'or', 'not', 
and 'implies', respectively, are regarded as operators 
and given the subscript '/OP', in addition to a distinc- 
tive subscript ('/ZB', '/ZC', etc.) whose use is ex- 
plained below. The comma, which is also subscripted 
with ' OP', is used by Wang in the following way: if it 
appears on the left of the dash it signifies the conjunc- 
tion of the two well-formed formulae (wffs) between 
which it occurs, and if it appears on the right of the 
dash it signifies the disjunction of the two wffs. The 
dash itself expresses implication or entailment; the 
Winer algorithm requires every formula to contain ex- 
actlv one dash, and thus treats every formula as an 
implication (a dash can always be placed at the far 
left of a formula that initially contains no dash with- 
out affecting validity). Any symbols in the input for- 
mula other than the dash and the operators are re- 
garded as variables and subscripted with '/v' (the 
period or dot, which Wang uses to partially parenthe- 
size the input formulae, is not required by our program 
and is not included). The formula is next tested for 
wellformedness by a series of rules that reject a formula 
if it contains too many or too few variables in relation 
to the number of operators, or if the variables and 
operators occur in an illegitimate order. Any commas 
are then deleted, and the program proceeds to the test 
of validity proper. 

The validity test is based on a set of ten rules (i.e., 
P2A, P2B, P3A, P3B, P4A, P4S, P5A, P5B, P6A, and P6B) 
for the elimination of operators, and one rule (i.e., p1) 
for the testing of a formula all of whose operators have 
hem eliminated.   These  eleven  rules  are  named in our 

program after the corresponding rules in Wang's state- 
ment of his algorithm. The program finds the leftmost 
operator in the formula, and eliminates it by whichever 
of the rules P2A-P6B is appropriate. At this point, the 
program exploits the “$ go-to” feature of COMIT in 
order to go directly to the section of the program that 
eliminates the leftmost operator. For example, if the 
operator is C/ZC,OP the program goes to rule zc, and 
thence directly to rule P3A (which eliminates C if it 
occurs to the right of the dash) or, if P3A is inapplica- 
ble, to rule P3B (which eliminates c if it occurs to the 
left of the dash). Certain of these elimination rules 
(e.g., P3A) create new branches of the formula, which 
are separated by double asterisks and stored on Shelf 
9. After all the operators have been eliminated from 
the formula in the workspace, the test of validity em- 
bodied in rule P1 and its directly following rule is ap- 
plied: if any propositional letter on the left of the dash 
is repeated on the right, the formula (specifically, the 
branch in the workspace) is valid; if not, the formula 
is invalid. This test is based on the fact that a state- 
ment of implicational form, whose antecedent is a con- 
junction of atomic wffs and whose consequent is a 
disjunction of atomic wffs, is tautologous if and only 
if at least one of the atomic wffs of the antecedent is 
repeated in the consequent; e.g., the formula 

(P AND Q AND R)   IMPLIES   (P OR S OR T) 
is a tautology, but 

(P AND Q AND R)   IMPLIES   (U OR S OR T) 

is not. (This test of validity bears a superficial resem- 
blance to our selection criterion for deciding among 
Analyses I, II, III, and IV of an argument, which is 
based on repetition of terms between premisses and 
conclusion. We daren't press the analogy too far, how- 
ever, since our criterion is not a conclusive test of valid- 
ity but merely establishes prima facie evidence of 
validity.) The procedure of eliminating operators and 
testing for repetition continues until an invalid branch 
is found, in which case the formula is invalid, or until 
all the branches are proved valid, in which case the 
formula is valid. 

The program described here exactly duplicates the 
print-out from Wang's program on page 18 of his arti- 
cle. Our running times range between 0.3 and 4.0 sec- 
onds (exclusive of compilation) per formula. The pro- 
gram was adapted for use in Section DA of our main 
program, where it provides a quick and easy test of 
validity for propositional logic formulae. 

The functional logic evaluation program is an out- 
growth of an earlier program embodying the Davis- 
Putnam proof procedure algorithm. The present pro- 
gram, like the Davis-Putnam algorithm, operates by 
reductio ad absurdum: accepting an input formula "F" 
in prenex form, it negates F, puts the matrix of not-F 
into conjunctive normal form, replaces each existen- 
tially qualified variable x in the matrix with a distinct 
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function of the universally quantified variables that 
precede x in the string of quantifiers, and attempts to 
deduce a contradiction from the resulting formula 
not-F'. In attempting to deduce a contradiction from 
not-F', the Davis-Putnam algorithm exploits the Her- 
brand theorem, which provides an effective procedure 
for making substitutions for the variables thereby gen- 
erating quantifier-free substitution instances (QFSI), 
and a corollary of which states that F is a theorem if 
and only if a finite conjunction of QFSI generated from 
not-F' is inconsistent. Our program, however, avoids 
actually generating the QFSI in most cases, by employ- 
ing the matching algorithm of Guard to test whether 
two matrix clauses could possibly yield any contradic- 
tory QFSI. The use of matching cuts down on the 
amount of material necessary to produce a proof, and 
results in a more efficient proof procedure program. 
The revised program incorporating matching not only 
proves theorems that the earlier program was unable 
to prove because of limitations of time and storage, 
but also reduces the computation time (in some cases 
by a factor of 10) for many theorems that the earlier 
program was able to prove. The matching algorithm is 
formulated by its author as follows: 

“Definition: The following algorithm which is to be 
applied to two atomic wffs B and C ... is called match- 
ing. 

Step 1: Consider B and C as being stored at lines (1) 
and (2) respectively. Reletter the variables of line (2) 
so that it has no variables in common with line (1). 

Step 2: Let us denote the n-th symbol—ignoring par- 
entheses and commas—of line (1) by (l)n. Similarly 
we define (2)n. 

Case a): If lines (1) and (2) are identical, the algo- 
rithm outputs (1) and stops. 

Case b): Suppose n is the smallest integer such that 
(l)n is different from (2)n. Since wffs are involved 
and case a) does not hold, neither (l)n or (2)n can 
be vacuous. We consider four subcases: 

i) Suppose (2)n is a variable, say X, while (l)n is 
a function or individual constant. Then call D the 
unique subformula of (1), starting at (l)n. If D 
contains x, output does not match, and stop. If D 
does contain X, substitute D for X everywhere in 
(1) and (2). Go back and repeat Step 2. 

ii) Proceed as in i) if the roles of (1) and (2) are 
interchanged. 

iii) If (l)n and (2)n are different variables, replace 
(2)n everywhere in (1) and (2) by (l)n. 

iv) If (l)n and (2)n are different constants, out- 
put does not match and stop.”17 

An illustrative example that the author gives is the 
application of the matching algorithm to the following 
two clauses: 

P(G(G(X,G(Y,X)),Z)) 
P(G(G(X,Y),G(X,X))) 

These clauses turn out to have the formula 

P(G(G(x,G(y,x)), G(x,x))) 

as a “general matching formula,” i.e., a QFSI common 
to both clauses and from which all other common QFSI 
can be generated (finding a general matching formula 
for two clauses is equivalent to proving that the two 
“match”). Two clauses that do not match are the fol- 
lowing: 

Q(X,X) 
Q(Y,H(Y)) 

These violate Rule i) of the algorithm, since the sub- 
formula H(X), which the algorithm generates, contains 
x. 

In our partial reconstruction of the Davis-Putnam 
algorithm, we have applied the matching algorithm in 
two ways: 

(1) to test whether two one-literal clauses (atomic 
wffs) would generate contradictory QFSI, thereby prov- 
ing the formula inconsistent; and 

(2) to generate from a one-literal clause and a poly- 
literal clause of length n, one or more clauses of length 
n—1. I 

Both (1) and (2) make use of what might be called 
“negative matching,” where two formulae are said to 
match negatively, or to “N-match,” if and only if one 
matches the negation of the other. An example of (1) 
would be the two one-literal clauses  

F(X,Y) and not-F(P(X,Y),P(X,Y)) 

which generate an infinite number of contradictor] 
QFSI, e.g., 

F(P(a,a),p(a,a))     and    not-F(P(a,a),P(a,a)). 

An example of (2) would be the one-literal clause 

F(y,P(x,y)) 

and the polyliteral clause 

not-(F(x,y))    v   G(y,x). 

These two clauses together entail 

G(P(x,y),y) 
which is shorter by one literal than the original poly 
literal clause, and which, as it turns out, is a one-literal 
clause. 

The latter example illustrates the following principle 
which we may call DS', since it is essentially an exten- 
sion of the principle of Disjunctive Syllogism, i.e., “A 
and (not-A v B) entail B.”  
DS': Given a one-literal clause A and a polyliteral 
clause (B v R), where A and B N-match via the general 
matching formula, if B is positive and equals M, or if 
B is negative and equals M except for the negation 
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sign, then A and (B v R) entail R. If, however, neither 
B nor its negation equal M, then A and (B v R) entail 
R', where R' is formed from R by making the same sub- 
stitutions in R that would have to be made in B (or its 
negation) to make it equal M. 

In the example used above to illustrate (2), the 
one-literal clause 

F(y,P(x,y)) 

and the first term of the polyliteral clause 

not-F(x,y)  v G(y,x) 

N-match via the general matching formula 

F(y,P(x,y)). 

In order to get F(x,y) to equal the general matching 
formula, it would be necessary to make the substitu- 
tions 

x = y    and    y = P(x,y) 

in F(x,y). These substitutions must also be made in 
the remainder of the polyliteral clause, i.e., 

G(y,x) 

yielding the one-literal clause 

G(P(x,y),y). 

The general plan of our revised algorithm, then, is 
to search for an N-match among the one-literal clauses, 
thereby proving the formula inconsistent. The one- 
iteral clauses are separated from the polyliteral clauses, 
the former being stored on Shelf 6 and the latter on 
Shelf 9. If there is no N-match among the one-literal 
clauses on Shelf 6, then DS' is applied to the first 
polyliteral clause on Shelf 9. If DS' can be applied, then 
it produces one or more new clauses containing n-1 
literals, where the original clause contained n literals. 
If n-1 = 1, i.e., if the new clauses generated are one- 
iteral clauses, then they are N-matched against the 
existing one-literal clauses on Shelf 6, where an N- 
Match proves the matrix inconsistent and the original 
formula valid. If a new one-literal clause does not N- 
Match the existing one-literal clauses, and if it is re- 
dundant, then it is deleted, but if it is not redundant, 
then it is stored at the front of Shelf 6, with the exist- 
ing one-literal clauses. If n-1 is greater than 1, i.e., if 
the new clauses generated are polyliteral clauses, then 
they are stored at the front of Shelf 9 with the existing 
polyliteral clauses, and the program again attempts to 
apply DS' to the first polyliteral clause on Shelf 9. If, 
however, the first polyliteral clause contains no terms 
that N-match any of the one-literal clauses, then it is 
stored on another shelf, i.e., Shelf 13, on which the 
original polyliteral clauses as well as all the new poly- 
literal clauses are stored. If and when the original list 
of polyliteral clauses on Shelf 9 becomes exhausted 
without  resulting  in  a  proof,  and  if  one or more new 

one-literal clauses have been generated in the course 
of running through Shelf 9, then the polyliteral clauses 
on Shelf 13 are transferred to Shelf 9, and the process 
begins anew. If, however, no more one-literal clauses 
were generated, or if there were no one-literal clauses 
to start with, then the algorithm reverts to the older 
method of generating QFSI and testing for consistency 
after each generation. The earlier version of our pro- 
gram used the Davis-Putnam algorithm for testing con- 
junctions of QFSI for consistency; the present version, 
however, uses only one of the three Davis-Putnam 
rules, the so-called “one-literal clause rule,” which may 
be defined as follows: 
One-literal clause rule: If P is a one-literal clause ( i.e , 
a conjunct containing no disjunction operators, and 
which is therefore an atomic wff), then all conjuncts 
containing P and all single occurrences of not-P are 
deleted from C (it is assumed that all tautologous con- 
juncts have been previously deleted from c, so that no 
conjunct contains both P and not-P). 

The one-literal clause rule is applied to a formula in 
conjunctive normal form until all the one-literal clauses 
(if any) are deleted or until two one-literal clauses are 
found to be mutually inconsistent. Since the applica- 
tion of the rule may produce new one-literal clauses, 
it is necessary to test the one-literal clauses for con- 
sistency after each application. The condition of in- 
consistency is the occurrence of two contradictory one- 
literal clauses, and the condition of consistency is the 
deletion of the entire formula. The Davis-Putnam 
algorithm contains two rules that are applied to the 
formula in the event that the one-literal clause rule 
fails to give a decision; our earlier program included 
these two rules, but they have been omitted from the 
present version of the program, partly because they 
use up a lot of machine time, but mainly because they 
are not guaranteed to return the program to the one- 
literal clause rule, which is the most efficient of the 
three rules. In place of the latter two Davis-Putnam 
rules, therefore, we have substituted a branching fea- 
ture, based on the method described in Quine's 
Methods of Logic18. Whenever the one-literal clause 
rule cannot be applied, the formula is split into two 
branches, by finding the first term of the formula, as- 
suming it first true and then false, and making appro- 
priate cancellations. Letting P be the first term, the 
first branch is produced by deleting entire conjuncts 
containing P and individual occurrences of not-P; the 
second branch is produced by deleting entire conjuncts 
containing not-p and individual occurrences of P. The 
second branch is stored at the front of a shelf, and the 
first branch remains in the workspace where an at- 
tempt is made to apply the one-literal clause rule to it. 
If this attempt fails, the formula in the workspace is 
split again in the same way, the first branch remaining 
in the workspace and the second branch being stored 
at the front of the shelf.   This  procedure continues until 
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a branch is obtained to which the one-literal clause 
rule can be applied. The consistency test terminates 
when one branch is proven consistent (i.e., is entirely 
deleted), in which case the entire formula is consistent, 
or when all branches are proven inconsistent (i.e., con- 
tain contradictory one-literal clauses), in which case 
the entire formula is inconsistent. 

Most of the theorems that we have submitted to the 
proof procedure program have been proven solely by 
the use of the N-matching procedure, and do not re- 
quire the generation and testing of QFSI. In fact, all the 
theorems that have resulted so far from the logic trans- 
lation routine are of this sort; their negated matrices 
contain one or more one-literal clauses that are proven 
to be ultimately contradictory by the N-matching pro- 
cedure. It may require as long as five or six minutes to 
prove theorems whose negated matrices contain no 
one-literal clauses, but we have not found this to be a 
serious difficulty since we have used the proof proced- 
ure program primarily in conjunction with the logic 
translation routine contained in Sections DA and DB of 
the program. 

Conclusion 

As we have seen, the program described in this 
paper is capable of proving a number of moderately 
complicated arguments in ordinary English that re- 
quire propositional logic or first-order functional logic 
for their symbolization. We therefore regard the pro- 
gram as a significant contribution to our understanding 
of the logic of natural language sentences. This area 
of study is of interest not only for its own sake but also 
for its potential applications to question-answering and 
information-retrieval systems, where the answer to an 
inquiry posed in natural language is usually not explic- 
itly stored but must be found by making deductions on 
the basis of the sentences or facts already stored. The 
most interesting part of the program, at least in our 
view, is not Section DA, since there are many dictionary 
lookup and parsing routines already in existence, nor is 
it Section DC, since logical proof-procedure programs 
are not exactly new either. Rather, it is the combina- 
tion of linguistic and logical analysis that is found 
principally in Section DB, and the coming to grips with 
the special problems that arise from the union of the 
two, such as the matter of the correct level of analysis 
to employ  for  the  logical  translation  of  an argument. 

The selection criterion that we have devised for choos- 
ing Analysis I, II, III, or IV, though a bit crude, has 
nevertheless considerable practical value in that it en- 
ables the program to avoid a lot of unnecessary logical 
computation; it amounts, after all, to doing a certain 
amount of logical calculation in advance of entering 
the actual proof-procedure routine, and an important 
question, worthy of further investigation, is just how 
much of the logic can be done in this way. Perhaps in 
some cases it would be possible to prove some argu- 
ments valid or invalid without employing a proof-pro- 
cedure algorithm at all, though this would require con- 
siderably more knowledge of the way in which people 
understand sentences and arguments in ordinary lan- 
guage and of their methods of reasoning. In particular 
a better understanding of the way in which a person 
rejects an invalid argument should be of considerable 
use, since a proof-procedure is designed to prove argu- 
ments valid rather than invalid, and in the areas that 
we view as providing the most important potential ap- 
plications of our research, rejection is just as important 
as proof. In law, for example, it is just as important to 
know which actions are illegal as to know which are 
legal. 

Apart from applications that require logical com- 
putation, a logic translation program such as ours may 
be of use in mechanical translation, or in abstracting 
and paraphrasing, where it would be desirable to store 
a concise formal representation of the input sentences. 
The logical language used would therefore be a kind 
of intermediate language, and would have to operate 
in conjunction with programs for translating the logical 
forms into sentences of the various output languages or 
for piecing them out with semantic content in various 
other ways. These purposes would of course require a 
logical language considerably more expressive than the 
first-order predicate calculus on which our program is 
based. 

In view of the many actual and potential applica- 
tions of our research into the logic of natural language 
sentences, therefore, it is clear that this subject is by 
way of becoming an important branch of computational 
linguistics, and that the further development of pro- 
grams like the one that we have described will be of 
considerable practical as well as theoretical signifi- 
cance. 

Received May 3, 1965 
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