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A Program for the Machine Translation of Natural Languages 
by W. Smoke and E. Dubinsky*, University of Michigan, Ann Arbor, Michigan 

In the following we give an account of a computer pro- 
gram for the translation of natural languages. The program 
has the following features: (1) it is adaptable to the translation 
of any two natural languages, not just to some particular 
pair; (2) it is a self-modifying program—that is, given the 
information that it has produced an incorrect translation, 
together with the translation which it should have produced 
according to the linguistic judgment of an operator, it will 
modify itself so as to eliminate the cause of the incorrect 
translation. 

Before the account of the program itself we give a short 
sketch of the considerations which led to the program, to- 
gether with a statement of the reasons why we feel a program 
of the type presented will be adequate for machine translation. 

The naive way to do research in machine transla- 
tion would be to pick a pair of languages, say Russian 
and English, and to try to discover some sort of trans- 
formational rules connecting them, in terms of which a 
computer program might be written. The transforma- 
tion rules might be derived from a comparison of the 
two languages on the basis of old-fashioned grammar, 
or from the more recent theories developed by struc- 
tural linguists, or by other means. Most of the effort 
in machine translation research so far has gone into 
deriving such transformation rules by one method or 
another, and making them more explicit; that is to 
say, putting them into a form in which they can be pro- 
grammed, and patching up the holes which are apt to 
appear in such rules when they are applied to an 
actual text. Assuming that this kind of effort were suc- 
cessful, its result would be a computer program, prob- 
ably haywired together, which would—given a certain 
restricted kind of input material—produce a more-or- 
less accurate, more-or-less readable translation. One 
would never know exactly when the machine was go- 
ing to bog down on some particularly difficult Russian 
passage, and when the program did bog down, no one 
would know exactly where to put the next piece of 
haywire to make it run again. 

Sapir said, “All grammars leak.” The same is going 
to be true of any computer program for the translation 
of languages: the time will come when it is inadequate 
—there will always be exceptions. If for no other 
reason, this will be true because languages are always 
changing. For this reason, we feel that any computer 
program which deserves the name of a language trans- 
lation program has to be a program which is capable 
of expansion, in a regular manner, to keep up with the 
demands that are made on it. Essentially, what one 
must   have  is  a   machine  which  learns  to  translate, 
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which is automatically modified as it translates more 
and more. Now how would one program a machine 
so that it would translate and in addition be able to 
modify its process of translating? 

Let us try to reach a more precise idea of what a 
self-modifying translation program would look like. 
The complete program P would consist of two parts, 
a translation program T and a master program M. The 
program T would be responsible for the actual trans- 
lation from one language to another, while M would 
take care of making the changes in T. Thus suppose 
that P, or the part T of P, is capable of translating the 
Russian sentences S1; . . ., Sn correctly into English, 
but that it translates the sentence Sn+1 incorrectly. Then 
the modification in P would take place as follows. 
Given Sn+1 and a correct English translation of Sn+1 as 
input, the master program M would modify T to ob- 
tain a translation program T'. The new complete pro- 
gram P' would consist of M and T', and would trans- 
late Sn+1 correctly. Furthermore, while we need not 
require that P' be capable of translating all of S1 ,. . ., Sn+1 
correctly, it is necessary that after some limited series 
P, P', P" . . . P(m) of modifications to P, a program P(m) 
be obtained which is capable of translating all of 
S1; . . ., Sn+1 correctly. That is, while the modifications 
can introduce errors, we cannot have a strictly recur- 
ring series of errors introduced. 

Finally, the programs P(m) which are obtained as 
modifications of P should be subject to some kind of 
regularity. We do not want a program which becomes 
complicated and uneconomical too fast; that is, the 
series of modified programs should converge in some 
reasonable sense, not diverge. 

This process suggests to us the familiar kind of be- 
havior which we call learning behavior. We like to 
think of a machine which is programmed in the man- 
ner outlined as a machine which learns to translate. 
     How  does  one  go  about  constructing  a  translation 
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program of the type we have described? It should be 
fairly clear by now that this problem is more a com- 
puter problem than a linguistic problem. But it is not 
a problem in programming techniques. 

When we set out to attack the problem, we felt 
that what we needed was a way of discussing lan- 
guages, translations, computers, etc., from an abstract 
point of view. That is, the problem in its main fea- 
tures is clearly independent of whether we are trans- 
lating from Russian into English, or Chinese into 
Sanskrit. Furthermore, it will be unimportant whether 
we think of using a Univac or an IBM 709 as a vehicle 
for the translation program. 

We can observe at this point that a solution to the 
problem as stated would of necessity have certain 
bonus features: it would not just be a solution to the 
problem of translating, by machine, Russian into 
English, but would, in all likelihood, be a solution to 
the problem of machine translation for any given pair 
of languages. 

But if we do not restrict our use of the term 
‘language’ to Russian or to English, or to any other 
particular, concrete language, then what do we have 
in mind? And what do we have in mind when we 
discuss a translation, a translation program, or a trans- 
lation program embodied in a machine? 

Perhaps we should first examine the question of 
what we mean by a translation program. The idea of 
a computer program abstracted from any particular 
computer is not new; it is usually depicted by a flow- 
diagram. When the same thing is studied by those 
with a more abstract turn of mind, it is sometimes 
called an abstract automaton. Abstract automata, at 
least the kind we are interested in, can be thought of 
as a collection or matrix of information-retaining cells. 
The information retained by any particular group of 
cells at any one time may be called the state of this 
part of the automaton. The state of the entire automa- 
ton changes discretely through time, its state at one 
instant completely determining its state at the follow- 
ing instant. In an input state the cells of the automaton 
are readied with information from the “outside”—the 
input information. Corresponding to each input state 
will be an output state, signaled by a “stop” or some 
such indicator. When the information from the cells 
is read off to the “outside”, it becomes the output in- 
formation. The output state is a function of the input 
state, and correspondingly, the output information is 
a function of the input information. 

An automaton, in its capacity as a means for pass- 
ing from input to output, is simply a certain kind of 
realization of a function. In our case, the function 
which is to be realized is what we have been calling a 
translation. The domain of this translation function is 
a certain class of texts in some language, and its range 
is a class of texts in another language. A text might 
be anything from a sentence to a paragraph or an 
article. Whatever it is, however, it is clear that it must 
be something which can be represented as a part of 
one   of  the   input  states   (in  the  case  of  the  source 

language), or as a part of the output states (in the 
case of the target language). That is, however we 
represent a text in a language, this representation must 
be essentially equivalent to representation by a state, or 
a partial state, of an automaton. If we restrict our 
thinking to reasonably realistic automata, we may sup- 
pose that an automaton has only a countable number of 
cells, each cell having only finitely many states. If we 
represent the cell states by a countable alphabet—in 
fact we will consider only finite alphabets—then a 
state of an automaton, and hence a text in a language, 
can and must be represented by a sequence from this 
alphabet. 

Thus we are led to the following provisional defini- 
tion of a language: a language is, for our purposes, 
nothing more than a collection of sequences of symbols 
from some finite alphabet. It has turned out to be con- 
venient to study systems with a bit more structure 
than this definition would imply. In fact, we have been 
primarily interested in studying systems of finite se- 
quences with some kind of binary composition. In the 
case of an associative binary composition, the systems 
are equivalent to a special kind of semigroup.* Lately, 
we have become interested in systems with non- 
associative binary composition. The reason for this shift 
of interest will become clear as we go on. 

But before we go on to describe our latest efforts, 
let us spend a few moments reviewing the earlier work. 
First, what is the problem? We can formulate it as 
follows. We are given two collections of corresponding 
texts, that is, two collections of finite sequences of 
symbols from two alphabets. The symbols may be 
thought of as letters, words, or any other convenient 
linguistic unit (which particular unit we use is of little 
importance at this stage). The correspondence is, more 
exactly, a function, the translation function, from the 
one collection (source language) to the other (target 
language). But what kind of function? We must re- 
quire that the function be such as is realizable by an 
automaton. But this requirement by itself is not suf- 
ficiently restrictive. In fact, as long as we are dealing 
with only a finite number of pairs of corresponding 
texts, it would always be possible, given sufficiently 
large storage capacity, simply to program a computer 
to translate each of the source language texts by look- 
ing it up in a text “dictionary”, where the complete 
text together with its translation is stored, and feeding 
out the translation. 

This means that a translation function, defined only 
on a finite domain, is always realizable in a trivial 
fashion. Therefore, it is reasonable to consider func- 
tions defined on infinite domains. In fact, since it 
seems to be impossible to give any explicit method for 
singling out sequences of symbols which we want to 
translate from those that we will not be called upon 
to translate (i.e., for separating “meaningful” from “non- 
meaningful” sequences of symbols) it is reasonable to 
consider functions which are defined on all sequences 
of symbols from a given alphabet.    But now, we clearly 

* See appendix. 
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can have functions which are not realizable by auto- 
mata. 

What sorts of functions are realizable by automata? 
A very simple example of such a function is provided 
by a homomorphism defined on a free and finitely 
generated semigroup. In fact, a homomorphism is de- 
fined by exploiting the sequential character of the ob- 
jects in its domain. Each element in its domain is a 
unique sequence of a finite number of symbols, and 
the definition of the homomorphism on the sequence is 
accomplished by letting the sequence translate as the 
sequence (in the same order) of the translations of the 
symbols. The fact that there are only finitely many 
symbols, together with the uniqueness of the repre- 
sentation by sequences of these symbols, guarantees 
the realization of the homomorphism by an automaton. 
An example of a homomorphism is given by a simple 
substitution cipher, e.g. 

THE BOY WENT HOME 

translates as 

UIF CPZ XFOU IPNF 

using the device of translating each letter of the alpha- 
bet by the following letter, translating space as space, 
and extending the function thus defined to a homo- 
morphism. 

What is wrong with using this kind of translation 
function for Russian to English translation? The diffi- 
culty lies partially in the size of the unit that would 
be necessary. One would probably need to use a unit 
of clause size, because of the ambiguity which would 
arise in dealing with units of lesser length. But this is 
not the only difficulty which might arise. 

Suppose that we have a collection of units U and 
a homomorphism T defined on sequences of elements 
of U. In other words, U is the set of generators of the 
free semigroup that is the domain of T. Suppose that 
a and b are two of the units of U, and that T (a) = 

 T(b) = If then, we encounter the sequence ab, 
its translation will be T(ab) = T(a)T(b) = Sup- 
pose this is incorrect, that is, we wish to assign an- 
other translation to the sequence ab. Recall that in 
this case, we wish to modify the translation function 
T to obtain a new translation function T' with the prop- 
erty that T' translates ab correctly, and also translates 
those sequences of elements of U which do not contain 
ab as did T. But now, T' cannot be a homomorphism. 
For any homomorphism which agrees with T on U 
will be identical with T. In particular, then, such a 
homomorphism cannot translate ab correctly, if T does 
not. Thus we see that we cannot restrict our choices 
of translation functions to homomorphisms, if we wish 
to be able to modify these functions as we indicated 
earlier. 

If homomorphisms do not lend themselves to modi- 
fication, what kinds of functions, realizable by auto- 
mata, do have this property? Perhaps the first such 
function  to  consider  is  what we call a sequential func- 

tion. A sequential function is a function defined on the 
free, finitely generated semigroup of all sequences of 
symbols of some finite alphabet. It is a kind of semi- 
homomorphism. The defining property of a sequential 
function f is that if a and b are two elements of the 
domain semigroup, then f(ab) = f(a)b', where b' is 
some element of the semigroup which contains the 
range of f. A homomorphism h is a special case of a 
sequential function, since h(ab) = h(a)h(b), that 
is, b' = h(b) in this case. In general, b' will depend 
on a. That is, because of the fact that the range semi- 
group as well as the domain semigroup is free on its 
generators, the correspondence which assigns to the 
elements b, c, d, etc., of the domain, the elements 
b', c', d', etc., which occur as well-defined parts of the 
sequences f(ab) = f(a)b', f(ac) = f(a)c', f(ad) = 
f(a)d', etc., is a function which has the same domain 
and range semigroups as f. We can denote this func- 
tion by fa, so that we have, for any element b of the 
domain, f(ab) = f(a)fa(b). Then in order that the 
sequential function f not be a homomorphism, it is 
sufficient that there be two elements a and b, such 
that for some element c we have fa(c) ≠ fb(c). That 
is, the translation fa(c) of c in the sequence ac is dif- 
ferent from the translation fb(c) of c in the sequence 
bc. Furthermore, it turns out that this new function 
fa is again a sequential function. For we can calculate 
fa(bc) as follows. By definition f(abc) = f(a)fa(bc). 
But also f(abc) = f(ab)fab(c) = f(a)fa(b)fab(c). 
Thus we have f(a)fa(bc) = f(a)fa(b)fab(c) so that 
fa(bc) = fa(b)fab(c), which shows that fa is a se- 
quential function. We call fa a derived function of f. 
Carrying the above computation a little farther, we 
have fa(bc) = fa(b)(fa)b(c); hence fa(b)(fa)b(c) = 
fa(b)fab(c), and therefore (fa)b(c) = fab(c). That is, 
the function derived from fa using b is the same as the 
function derived from f using ab. Thus the corre- 
spondence ψ which associates to an element a of the 
semigroup and a sequential function f the sequential 
function ψ (f, a) = fa, has the associativity property 
ψ (ψ (f, a), b) = ψ (f, ab). What this means is that a 
sequential function f can be defined on a free semi- 
group by defining the sequential functions derived 
from f on each of the generators of the semigroup. In 
particular, then, a sequential function certainly be- 
comes realizable by an automaton if it has only finitely 
many derived functions, and is defined on a finitely 
generated free semigroup. In fact, the realization of a 
sequential function of this kind is accomplished in a 
very natural way by the type of automaton known 
as a sequential automaton, or a finite state ma- 
chine. These automata have been extensively studied 
by several authors 3 ,4 ,5 ,6. To obtain the sequential 
automaton A corresponding to a sequential func- 
tion f, we need merely take, as a set of states F of A, 
the set of derived functions fa of f, letting f itself be 
the initial state. The input I of A is the semigroup on 
which f is defined, and the output O is the range of f. 
The next-state function of A is the function f defined 
previously,  and  the  output  function  of  A  is  the  cor- 

4 



respondence φ which associates to an element b of I 
and to a state fa of A the element φ (fa, b) = fa(b) of 
O. We thus obtain the sextuple A = (I, O, F, f, ψ, 
φ ) with the requirement ψ (ψ (g, a),b) = ψ (g,ab) 
on ψ and a corresponding requirement φ (g,ab) — 
φ (g,a) φ (ψ (g, a),b) on φ  where g is in F, a and b 
are in I. Except for the designation of f as initial state, 
the restriction of F to be finite, and the restriction of 
I and O to be free and finitely generated, this is ex- 
actly the definition of a sequential machine as given 
by Ginsberg.3 

Equivalently, one may begin with a sequential ma- 
chine with a designated initial state, and define a 
sequential function. It is clear intuitively that an auto- 
maton will realize a sequential function just in case 
the output sequence corresponding to an initial seg- 
ment of some input sequence is an initial segment of 
the output sequence corresponding to the complete in- 
put sequence. 

A simple example of a sequential function is given 
by the translation of 

THE BOY WENT HOME 

as 

TBG IXW TYMG ODQV 

accomplished by using the correspondence between 
the letters and the numbers from 1 to 26, and assign- 
ing to each letter in the first row the letter which cor- 
responds to the sum of the numeral values, modulo 26, 
of the letters up to and including the one to be trans- 
lated (except that space always translates as space). 
The sequential function thus defined has 26 derived 
functions, fA through fZ = f. Every derived function is 
equal to one of these; e.g., fAB = fC. 

Let us now return to a consideration of the problem 
of modifying a given translation function T, where we 
now may let the modified function T' be a sequential 
function. Suppose, for simplicity that T is the function 
considered before, defined as an extension to a homo- 
morphism of some function (we can still call it T) 
defined on the set U of free generators of a free finitely 
generated semigroup. Suppose also that we wish to 
have T' agree with T except on sequences containing 
ab, and  that  the  proposed  modification  on  ab  is that 

b should translate as after a, and otherwise as = 
T (b). Then we can define T' by letting T'm = T if m 
is  a  sequence  not  ending  in  a,  T'a(c)  =  T(c)  if  c ≠ 
b, T'a(b) =  and then let T' be the extension 
which results by enforcing the associativity condition. 
This kind of modification also succeeds in case T is 
already a sequential function which is not a homo- 
morphism. 

Thus we are able to introduce modifications into 
translation functions which are sequential functions, 
if these modifications are suitably restricted. Essentially, 
we can let preceding context modify the translation of 
a particular unit, thereby modifying the translation 
function  itself.   By  running  the  text  into  the  machine 

from right-to-left instead of from left-to-right, we 
could equally well modify the translation of a unit on 
the basis of following context. In fact it would seem 
that, by proceeding from left-to-right and “holding- 
up” the translation of a given unit until the machine 
senses what follows it, it would be possible to take into 
account both preceding and following context. That is, 
we could attempt to construct a sequential machine 
that  would  translate  b  as  in  the context abc and as 

 otherwise. This attempt would run into the difficulty 
that b would go untranslated in the context ab occur- 
ring at the end of input sequences, since the machine 
“waits” to see what comes next before translating b 
after a, and in case ab is a terminal segment nothing 
comes next. This difficulty could be avoided by the ad- 
dition of a special symbol [] to the input alphabet, 
having the function of “closing off” input sequences, so 
that the terminal segment ab would become ab[]. 
This device, however, is awkward. 

A more serious problem is encountered when we 
examine sequential functions from the point of view of 
their flexibility with regard to alterations of order be- 
tween input and output. For example, it is impossible 
to construct a finite-state sequential automaton which 
will realize the very simple function which translates 

THE BOY WENT HOME 

as 

EMOH TNEW YOB EHT 

i.e., the function which simply reverses the order of 
the letters in an input sequence. 

Another difficulty that we run into using sequential 
functions as translation functions is illustrated by an 
attempt to construct a sequential function, defined on 
the alphabet ~, ∨, (,), p1, p2, p3, . . . etc., which will 
correctly translate well-formed expressions of the pro- 
positional calculus, in the primitives ~ and ∨, into the 
equivalent expressions in the primitives ∧ and ⊃. Con- 
sider expressions of the form 

~(... (~((~p1) ∨p2) ∨p3)...) ∨pn 

which translate correctly as 

(...((p1 ⊃ p2) ⊃ p3)...) ⊃ pn. 

It is intuitively clear that, reading from left-to-right, a 
sequential machine would translate ∨ as ⊃ if it “re- 
members” that a ~ preceded the opening parenthesis 
paired with the closing parenthesis preceding the ∨ in 
question. But it is clear that to overtax the “memory” 
of a given sequential machine, it is enough to try using 
it to translate correctly a proposition of the above form 
with sufficiently many “levels”. 

This difficulty is related to the objection, voiced by 
Chomsky,2 that arises when one attempts to employ 
a “finite-state grammar,” which is essentially a sequen- 
tial automaton without input, as a “sentence generator” 
for languages which have sentences of the form “if . . . 
then . . .”, or “either . . . or . . .”. Again, these sentences 
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may be “nested” to a level which overtaxes the capac- 
ity of the machine. 

Thus, sequential functions would seem to be not 
only awkward, but perhaps even basically inadequate 
for use as translation functions. This is in accord with 
our intuitive feeling about language. It is not that we 
feel that a language has a God-given structure of some 
kind, which it is our task to discover, adopting then a 
type of translation function which fits this structure. 
However, we do feel that a given type of translation 
function will necessarily impose a corresponding struc- 
ture on the language on which it is defined; and we 
can then appraise our choice on the grounds of econ- 
omy, our intuitive feelings of neatness and elegance, 
etc. By these standards, it appears that sequential 
functions do not offer a good choice as translation 
functions. 

We have now reached the point where we shall 
begin to describe our recent work. We intend now to 
discuss a type of translation function which does not 
have the inadequacies of those that we have described. 
In fact, the type of translation function which we now 
wish to consider, will lead, at the end of this discus- 
sion, to what we believe to be a computer program 
which is adequate for machine translation. 

The origin of the program is a system of notation, pro- 
posed by Bar-Hillel1 which is designed to denote 
the syntactic categories of linguistic expressions. Bar- 
Hillel’s notation can be built up out of the symbols n, 
s, /, \, (,). Used in conjunction with a natural lan- 
guage, expressions which are commonly called nomi- 
nals—nouns, pronouns, adjective-noun combinations, 
noun phrases, etc.—are assigned the category n. Sen- 
tences are assigned the category s. An expression 
which produces an expression of category β when pre- 
fixed to an expression of category a is assigned the 
category (β/a). Thus the adjective the prefixed to the 
noun boy produces the nominal the boy; hence the has 
the category (n/n) since boy and the boy both have 
category n. Similarly, an expression which produces an 
expression of category β when affixed to an expression 
of category a is assigned the category (a\β). Thus 
went in the boy went is assigned the category (n\s), 
and home is assigned the category ((n\s) \ (n\s)). 
The parts of the sentence are assigned categories as 
follows: 

The         boy went         home 

(n/n) n (n\s)     ((n\s) \ (n\s)) 

n                     (n\s) 

s 

Perhaps we can notice now that this process of cate- 
gory assignment is in some sense non-associative. That 
is, the assignment indicated induces an association of 
the sentence as follows: 

((The boy) (went home)) 

Associated another way, e.g.: 

(((The boy) went) home) 

the result is not a sentence. This is reflected in the fact 
that the category of the juxtaposition of ((the boy) 
went), an expression of category s, and home, an ex- 
pression of category ((n\s) \ (n\s), is undefined. 

An expression may belong to several categories. 
Thus home could also be in category n; or in category 
(n/n), as in home run. Sometimes the context will 
determine that a given expression must be function- 
ing in a certain capacity within that context, as flying 
in they are flying. That is, if it is known that the entire 
expression has only the category s, then an analysis of 
the assignments resulting from 

They are flying 

n         ((n\s)/n)        (n/n) 

(((n\s)/n)\((n\s)/n)) 

n 

shows that of the three choices of category for flying 
only n can be correct. However, consider the sentence 

They are flying planes 

n         ((n\s)/n))     (n/n) n 

                     (((n\s)/n)\((n\s)/n)) 

Depending on whether we read the sentence as 

(They  ((are flying)  planes)) 

(They (are (flying planes))) 

or as 

we choose ((n\s)/n) \ ((n\s)/n)) or (n/n) as a 
category for flying. This ambiguity occurs not only in 
sentences, of course, but also in such an expression as 
the nominal purple people eater. Is it ((purple people) 
eater) or is it (purple (people eater))? 

We have observed that the way we associate the 
words in a sentence or a phrase can alter the meaning 
of the expression. It is reasonable to suppose then, that 
the association of the units in an expression can influ- 
ence its translation. But this means that we should be 
studying translation functions defined, not on associa- 
tive systems such as semigroups, but on non-associa- 
tive systems. We will not be satisfied, of course, with 
a computer program which requires that a pre-editor 
insert parentheses into a Russian sentence before it is 
given to the machine to be translated. This is not what 
we have in mind, but rather we think it might prove 
convenient to break our problem into two parts—to 
supply parentheses, and to translate. In fact, one way 
of correctly supplying parentheses will be to try trans- 
lating all possible associations of a given input se- 
quence, and then to consider that association the cor- 
rect one which has a translation. If there are two 
associations with differing translations, this means, of 
course, that we are dealing with an ambiguous se- 
quence, just as in the case of a sentence with two 
meanings corresponding to two different associations. 
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Let us now turn to the program. It will be evident 
how the construction of the program was influenced by 
Bar-Hillel’s notation. 

Recall that we have said that a self-modifying pro- 
gram P for machine translation would consist of a 
translating part T and a modifying part M. It will be 
convenient to describe our program in these terms. Let 
us first describe T, that is, we will describe T(n), the 
translation program at the nth stage of modification. 

The information which is stored in the machine and 
forms the reference material for T consists of a dic- 
tionary and a category multiplication table. The input 
to T is a source language text. The action of T on this 
input text is as follows. 

1. The units of the input text are referred to the 
dictionary, and for each unit for which an entry is pre- 
sent   in   the   dictionary,   the   entry   is   extracted   and 
brought to the working space of the machine. For each 
unit for which a dictionary entry is not present, a spe- 
cial entry, indicating dictionary blank, substitutes as a 
dictionary entry for the unit. A dictionary entry con- 
sists  of a  list  of pairs  of  output units  and  symbols 
designating categories. 

2. We now have stored in the working space of the 
machine a list for each input unit. Together these lists 
comprise a sequence of lists in the same order as the 
corresponding sequence of input units in the text. This 
sequence of lists is now processed by a multiplication 
operation on all possible associations. 

For each ordered pair of associated lists, i.e., (A,B) 
in ((AB)(CD)), and each ordered pair (a,b) of en- 
tries in (A,B), i.e., a in A and b in B, the machine 
refers to the category multiplication table. The category 
multiplication table is a square array of the following 
type: 

 λ        α        β       γ 
                         λ     λ,λ     λ,λ     λ,λ    λ,λ 

α     λ,λ     λ,λ      γ,α   α,- 
β     λ,λ     β,-      λ,-      -,- 
γ     λ,λ      -,α     α,β     -,β 

where the row refers to the first, the column to the 
second element of the ordered pair. The two elements 
of (a,b) each consist of a pair, the first element an 
output unit, the second a category. Let us suppose 
that the category of a is a and that of b is β. The ma- 
chine then locates the entry corresponding to a and β, 
which in the example is (γ,α), and places two entries 
in  the  derived  list  AB.  One  entry  consists of the pair 
( γ) where and are the output units of a and b 
respectively, and the other is the pair ( α). The de- 
rived list AB consists of all such pairs for all choices of 
(a,b) in (A,B) except for the pairs ( -). That is, 
if in the example the category of α were γ and that of 
b were α, then the multiplication table entry corre- 
sponding to this pair would be (-,α), which indicates 
that the first element of the product is “undefined”. 

In this way, building up derived lists from the basic 
dictionary  entry  lists  by  means  of the category multi- 

plication table, a given association of the text is suc- 
cessively reduced. Either the process ends with at least 
one category assignment to this association, or some 
derived list is empty because products are undefined. 
In the latter case the association is considered to have 
no translation. In the former case the list correspond- 
ing to the association is considered to be a possible 
translation of the original input text and is printed out. 
The output consists of the complete list of all possible 
translations corresponding to all associations. If the 
complete list is empty an indication of this fact re- 
places the translation. 

This completes the description of T. We now de- 
scribe M, the modifier program. The program M is 
called into action only when T makes an error, that is, 
only when it is decided, by a comparison of the input 
and output texts, that the translation is unsatisfactory. 
There are two ways in which the translation can be 
unsatisfactory. On the one hand the list of translations 
may not contain any translation which is correct. On 
the other hand the list of translations may contain 
some translations which are incorrect. In the first case 
the necessary modification involves supplying a cor- 
rect translation, in the second case it involves eliminat- 
ing the incorrect translations. 

We must organize the modification process in such 
a way that these two kinds of modification do not in- 
terfere with one another. What we shall do is to per- 
form the modifications of the second type, i.e., elimi- 
nating incorrect translations, in such a way that correct 
translations are never eliminated. Then an unsatisfac- 
tory translation of the first kind can occur only if the 
dictionary is inadequate. That is to say, when there is 
no correct translation present in the output list, the 
modification amounts to augmenting the dictionary. 

Thus the first part of M is a program which makes 
up new dictionary entry lists and adds to lists already 
present in the dictionary. When no correct translation 
is present in the output list, one must be supplied by 
the operator. Corresponding to this translation the 
operator will also indicate, for each input unit, which 
sequence of units in the translation it corresponds to. 
This material then becomes the input of M, which 
locates the unit in the dictionary corresponding to each 
input unit, or enters it into the dictionary if it does 
not already appear there, and adds to the dictionary 
entry list thus obtained the corresponding sequence 
of output units, assigning them to a special “universal” 
category. The universal category is defined as that 
unique category, such that its product with any cate- 
gory is a pair of universal categories. 

This completes the first stage of the correction 
process. If T was the original translation program, the 
new translation program T' which results from T by 
the modifications described above will yield a transla- 
tion of the text which is satisfactory on at least the first 
count—the list of translations will contain at least one 
which is correct. 

The next problem is to eliminate from the list the 
incorrect translations.   As  a first step the operator must 
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inform the machine exactly in what respect an incor- 
rect translation is incorrect. For example, a translation 
of a sentence might be incorrect if it contains an in- 
correctly translated phrase; or each phrase within a 
sentence may be correct if considered without refer- 
ence to context, but incorrect when considered in con- 
text; or finally, the translation of each phrase may bo 
correct even when considered in context, but the ar- 
rangement of the translation may be incorrect. 

The task of the operator is thus as follows: for each 
association of the text which leads to an incorrect 
translation, he must decide, for every indicated juxta- 
position of two associated elements—assuming it has 
already been decided that each of the two elements 
is correctly translated—whether the indicated juxta- 
position of the elements (in either order) is a correct 
translation of the corresponding part of the input. That 
is, he must think of the corresponding part of the input 
as entirely divorced from its context, and decide 
whether in fact it is correctly translated by the juxta- 
position (in either order) of the two output units in 
question. Essentially then he must decide this on the 
same basis on which he decides on the translations of 
complete texts: for the purposes of this decision the 
part of the input in question is treated as a complete 
text. In particular, if the translation is considered in- 
correct in one association, it must also be considered 
incorrect in any other association which contains the 
two elements associated in the same order, as a trans- 
lation of the same part of the input. 

If it is decided that the translation is correct, the 
two elements are combined to produce a new element 
which is also considered correct. Proceeding in this 
way the operator must eventually encounter a pair of 
elements which are correct, but whose juxtaposition 
is incorrect (he cannot encounter a unit which is in- 
correct since we may suppose the dictionary not to 
contain incorrect entries). 

Suppose then that and are two elements, each 
correct, but is incorrect. The operator then gives 
this information to the machine. That is, he supplies 
the machine with the part of the input which led to 
the translation together with the association of the 
units in  and indicates for each unit of the input 
text to which units of  it corresponds. Since  is a 
permissible combination according to the present cate- 
gory multiplication table, this means that the first 
element of the product αβ is defined. In the example 
αβ = (γ,α). The action of M will be to change the 
categories of  and  to categories α’ and β’ such that 
the first element of α’β’ is not defined, while at the 
same time keeping α’δ = αδ for every category δ≠β’, 
keeping δβ’ = δβ for every category δ ≠ α’, and keep- 
ing δα’ = δα and β’δ = βδ for every category δ. In 
other  words  M  will  change  the  categories of and  
to α’ and β’and  respectively, and will add two rows and 
two columns to the category multiplication table (un- 
less  these  rows  and  columns  are  already present).  In 

the example, the new multiplication table will be as 
follows. 

              λ        α        β       γ        α’       β’ 
     λ     λ,λ     λ,λ     λ,λ    λ,λ      λ,λ     λ,λ 
     α     λ,λ     λ,λ      γ,α   α,-      λ,λ     γ,α 
     β     λ,λ     β,-      λ,-      -,-      β,-     λ,- 
     γ     λ,λ      -,α     α,β     -,β     -,α     α,β 
     α’   λ,λ     λ,λ     γ,α      α,-     λ,λ     -,α 
     β’   λ,λ     β,-      λ,-      -,-      β,-     λ,- 

If now and are not translations of units, but are 
elements built up out of combinations of units, not 
only must the categories of  and  be changed from 
α and β to α' and β' with the first element of α'β' un- 
defined, but also the categories of the successive seg- 
ments of which and  are resulting combinations 
must be  correspondingly  changed.  For example, if = 

 and  has category γ,  has category δ, then the 
categories of  and  must be changed to γ’ and δ’, 
where γ’ and δ’ have all the properties of γ and δ ex- 
cept that the first element of γ’ δ’ is α'. This procedure 
will finally result in changes in the categories of the 
units of which  and  are composed. When the cate- 
gory of a unit is changed the corresponding dictionary 
entry is also changed. 

It is asserted that this procedure will lead to the 
elimination of all incorrect translations and retain all 
correct translations. It should be clear, in the first 
place, that an incorrect translation is eliminated if and 
only if it is eliminated as a result of every association, 
and that a correct translation is retained if and only if 
it is retained as a result of some association. Thus, in 
order to convince ourselves that the procedure actually 
does lead to the desired result, it will be sufficient to 
consider a fixed association, and show that any correct 
translation which results from this association before 
the modification will continue to do so after the modi- 
fication, and that no incorrect translation will result after 
the modification. But it is clear than any pair of output 
units which enter into at least one correct translation, 
e.g.,  and  in  ,  are  such that there is a choice 
for the other units,  in the example, such that the 
resulting juxtaposition is a correct translation. There- 
fore the juxtaposition of these two units is correct, and 
their categories are not changed as a result of the 
modification. 

On the other hand, given an incorrect translation it 
must result either from the incorrect juxtaposition of 
its two highest order segments, in which case it is 
eliminated at this stage, or from one of these two seg- 
ments being incorrect, etc. Again, inductively one sees 
that there must be two segments of some order whose 
juxtaposition is incorrect, causing their categories to 
be altered and the translation eliminated. 

This completes the description of the modification 
program M. It will probably be helpful at this point to 
consider an example of the use of T and M. 

Let us suppose we are translating from English into 
German.  We  will  take  as  our input unit the word, and 
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consider the input text the boy left. Let us suppose 
also that, corresponding to the three input units, the 
dictionary contains the three entries 

THE: DER α   BOY:  KNABE δ  LEFT: LINKS ε 
         DAS β                  

              DIE   γ 

and that the portion of the category multiplication 
table in which we are interested is as follows (only the 
required products are indicated): 
 
              λ        α        β       γ        δ       ε         µ 
     λ     
     α     λ,λ                                   µ,- 
     β     λ,λ                                   -,- 
     γ     λ,λ                                    -,- 
     δ    λ,λ                                             -,δ 
     ε    
     µ                                                      -,- 

The first act of T is to place the dictionary entries in 
sequence in the work space: 

DER α    KNABE δ    LINKS ε  
DAS β 
DIE γ 

There are two possible associations from which a 
translation might be obtained: 
(1)        DER α     KNABE δ  LINKS ε 

        DAS β        
 DIE γ 

(2) DER α     (KNABE δ     LINKS ε) 
DAS β 

     DIE γ 

Since of the products αδ, βδ, and γδ, only the first 
element of αδ is defined, the first association reduces 
to 

DER KNABE µ LINKS ε 

but, as µε is undefined, no translation results from this 
association. 

From the second association we obtain first the de- 
rived list 

      DER α     LINKS KNABE δ  
      DAS β 
      DIE γ 

since the first element of δε is undefined, and the sec- 
ond is δ. This list then reduces to 

DER LINKS KNABE µ 
so that the entire output consists of this one transla- 
tion. 

Suppose now that it is decided that the correct 
translation of The boy left is not Der links Knabe but 
Der Knabe verliess. Assuming that the correspond- 
ence between input units and output units is indicated 
as 

THE—DER 
BOY—KNABE 
LEFT—VERLIESS 

the modification program M will locate the dictionary 
entries corresponding to the input units, and will enter 
verliess in the list for left, assigning to it the universal 
category λ. 

Again using The boy left as input, the new transla- 
tion program will cause the sequence 

DER α    KNABE δ    LINKS ε 
DAS β                       VERLIESS λ 
DIE γ 

to appear in the work space. From the association 

   DER α    KNABE δ      LINKS ε 
     DAS β                           VERLIESS λ 

DIE γ 

we obtain 

DER KNABE µ LINKS ε 
VERLIESS λ 

and from this list, the two translations 

DER KNABE VERLIESS λ 
VERLIESS DER KNABE γ. 

From the second association 
      DER α     KNABE  δ       LINKS ε 
      DAS β                                VERLIESS λ 
      DIE γ 

we get 

DER a LINKS KNABE δ 
DAS β KNABE VERLIESS λ 
DIE γ VERLIESS KNABE λ 

which leads to the translations 

DER LINKS KNABE µ 
DER KNABE VERLIESS λ 
KNABE VERLIESS DER λ 
DER VERLIESS KNABE λ 
VERLIESS KNABE DER λ 
DAS KNABE VERLIESS λ 
KNABE VERLIESS DAS λ 
DAS VERLIESS KNABE λ 
VERLIESS KNABE DAS λ 
DIE KNABE VERLIESS λ 
KNABE VERLIESS DIE λ 
DIE VERLIESS KNABE λ 
VERLIESS KNABE DIE λ 

so that the complete list of translations, from both 
associations, has fourteen members. Der Knabe verliess 
resulting from both associations. 

Suppose now it is decided that only Der Knabe 
verliess is correct, and that in fact we wish to retain it 
only as a result of the first association. That is, we 
can decide first that links Knabe is incorrect as a trans- 
lation of boy left and that so also are Knabe verliess 
and  verliess Knabe,  and finally,  that while  Der Knabe 
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and verliess are correct as translations of the boy and 
left, that verliess der Knabe is incorrect as a transla- 
tion of The boy left. In terms of the categories, this 
means that the dictionary entries are corrected to: 

THE: DER α' BOY:  KNABE δ' LEFT:  LINKS ε' 
         DAS β                                         VERLIESS λ' 
         DIE γ 

and the multiplication table becomes  (part of it): 
              λ     α     β    γ     δ     ε      µ    δ      ε     λ 
     λ     
     α     λ,λ                      µ,- 
     β     λ,λ                       -,- 
     γ     λ,λ                       -,- 
     δ    λ,λ                               -,δ 
     ε    
     α’                                                   µ’,- 
     δ’                                                            -,-   -,- 
     µ’                                                    -,-    -,-   λ,- 

(One notes that it would be possible for a category 
to become empty, all units belonging to it becoming 
reassigned. Thus it would be reasonable to periodically 
examine the multiplication table for unnecessary cate- 
gories.) 

We will conclude by offering a few comments on 
methods of using the program. In the first place, it 
should be clear that it would be possible to institute 
several  different  kinds  of  “training  programs” for the 

program. One could begin with a completely blank 
dictionary and a multiplication table of the form 

 λ 

λ     λ,λ 

and begin translating sentences as texts. It would 
probably be more reasonable, however, to begin with 
the above multiplication table and a dictionary al- 
ready reasonably large, and begin translating short 
and more or less unambiguous phrases, thus adding 
gradually to the category system. 

It is of course evident that a text need not be any 
one in particular of the standard linguistic units, but 
it might be mentioned that the segment which we have 
been referring to as a unit is similarly unrestricted. The 
only requirement on the system of segmentation of the 
input text, leading to these units, is that it be such as 
to give a free decomposition, that is, that no input 
text should have two distinct decompositions as a se- 
quence of units. The obvious choice is of course the 
word, but theoretically one could use letters of the 
alphabet, syllables, sentences, etc. In fact, if the de- 
tails of the decomposition could be worked out, some 
choice of stems, prefixes, and endings might mate- 
rially reduce the size of the dictionary (at the cost of 
increasing the size of the multiplication table, of 
course). There is no restriction at all on the output 
units. Thus if the input units were words, the output 
units could be, and frequently would be, sequences 
of two or more words. 

Received July 16, 1959 

  

APPENDIX 

Binary  Composition  and  Semigroups 

A set S is said to have defined on 
it a (not necessarily associative) law 
of binary composition if there exists a 
map S × S → S. The image of a 
pair (a, b) of elements of S under 
this map is denoted ab. The map 
S × S → S is associative if for every 
three elements a, b, c of S we have 

(ab)c = a(bc) 

A  system  with  an  associative  binary 
composition is called a semigroup. 

A subset T of S is a subsemigroup 
of S if the restriction of S × S → S 
maps T × T into T. The intersection 
of any family of subsemigroups of S 
is again a subsemigroup of S. If G is 
any set of elements of S, the sub- 
semigroup generated by G is the 
intersection of all subsemigroups 
containing G, and G is called a set 
of generators for this subsemigroup. 
Every subsemigroup T of S has at 

least one set of generators, namely 
T itself. In particular, S has a set of 
generators. A semigroup S is finitely 
generated if it has a finite set of gen- 
erators. 

The product of any sequence 
s1, s2, . . .,.sn of elements of a semi- 
group S is an element of S defined 
inductively in terms of the binary 
composition, and is shown to be in- 
dependent of the association of the 
sequence. A set F of elements of S is 
said to be free in S if every element 
of S is a product of at most one se- 
quence of elements of F. A semi- 
group S is free if it has a free set G 
of generators. It is easily shown that 
this is the ease if and only if every 
element of S is the product of one 
and only one sequence of elements 
of G. It is shown that if a semigroup 
S is free then its set G of free gen- 
erators is unique. 

Given two semigroups S and T, a 
homomorphism of S into T is a map 
h:S     →     T     with     the    property    that 

h(ab)    =   h(a}h(b)   for   a   and   b 
in  S. 
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