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A Formula Finder for the Automatic Synthesis of Translation Algorithms 

by Vincent E. Giuliano*, Computation Laboratory of Harvard University 

A system of procedures and computer programs is proposed for the 
semi-automatic synthesis of Russian-English translation algorithms. 

For the purposes of automatic formula finding, a large corpus of 
Russian scientific and technical text may be processed by an automatic 
Russian-English dictionary, the resulting word-by-word translation post- 
edited according to a systematic procedure, and the final translation trans- 
cribed back onto magnetic tape for input to a computer. The operation of 
the proposed system is based on the automatic comparison of magnetic 
tapes containing the original automatic dictionary outputs with ones 
containing the parallel post-edited texts. It is expected that, when given 
proper clues, the formula finder will be capable of synthesizing algorithms 
that can be used to convert one text into the other. 

The clues corresponding to a desired algorithm consist mainly of a 
list of logical variables that might in some combination govern the appli- 
cation of a specified post-editing transformation. Whenever a product of 
the transformation is found in the post-edited text, the formula finder 
examines the truth value configuration of the given variables in the auto- 
matic dictionary output. After examining all instances of the transforma- 
tion, the formula finder ascertains whether the given variables can be 
combined into a logical formula that implies the given transformation. The 
formula finder compounds the given variables into a valid and optimal 
translation algorithm if it is at all possible to do so. 

The automatic production of accurate and reliable 
sentence-by-sentence translations between pairs of 
natural languages must await the resolution of com- 
plex syntactic and semantic problems whose solutions 
must ultimately be expressed as machinable algorithms. 
These are well-defined rules that operate on auto- 
matically interpretable information units. The central 
goal of much current research in the field of automatic 
language translation is to find and test such algorithms. 
For example, certain syntactic algorithms presently 
being studied at the Harvard Computation Laboratory 
are designed to remove many of the ambiguities of 
case and tense residual from word-by-word analyses 
of Russian. These particular algorithms reflect the 
governing influences of certain types of words upon 
their close neighbors, and hopefully will clear the way 
for the discovery of more sophisticated procedures to 
deal with larger phrases and clauses. 

Problems of testing translation algorithms by ma- 
chine have been discussed elsewhere and automatic 
programming systems are being devised to facilitate 
the communication of algorithms from man to ma- 
chine.1,2      The    present    paper    is    concerned    with    the 
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semiautomatic synthesis of translation algorithms from 
empirical data, a means of formula finding that might 
eventually supplement current research methods. The 
proposed formula finder is a system of computer pro- 
grams that will compare an extensive body of Russian 
text with its parallel English translation. When given 
proper clues by linguists, the programs will synthesize 
algorithms that can be used to transform one text into 
the other. 

The formula finder system to be discussed here is 
compatible with the translating programs operating 
at Harvard.3,4,5 Russian is therefore taken as the source 
language for translation, English as the target lan- 
guage. Nevertheless, the logical principles used in de- 
signing the formula finder are not language-dependent. 
These principles could be employed in the design of 
similar formula finders capable of operating with other 
given pairs of mutually translatable natural or artificial 
languages. 

While an automatic formula finder may eventually 
serve as an important aid for research in automatic 
language translation, such a system cannot replace 
the linguists and other scholars currently engaged in 
this activity. The algorithms synthesized by the pro- 
posed formula finder are guaranteed to work only on 
the experimental corpus of text examined by the ma- 
chine; they will be only approximately valid when ap- 
plied   to   other   texts.     The   synthesized   algorithms  must 
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be examined, evaluated, and perhaps revised or gen- 
eralized in the light of long experience with the lan- 
guages by monitoring human linguists. 

1.    Translation Transformations 

It is convenient to introduce a few symbolic conven- 
tions. The sentences in a corpus of Russian text to be 
translated or analyzed will be thought of as serially- 
numbered, the symbol sj being used to denote the jth 
sentence. Words, punctuation marks, special symbols, 
and other components of sentences will also be thought 
of as being numbered within their sentences, and the 
symbol wij will be used to identify the ith component 
of the jth sentence. 

An essential subsystem of the formula finder is an 
automatic Russian-English dictionary operating on 
inflected Russian word forms, i.e., a so-called “full 
paradigm” dictionary.4 Although the Harvard diction- 
ary contains Russian word stems, transformations of its 
outputs are provided that make the dictionary behave 
as if its words were represented by their full para- 
digms.5 The transformation Td performed by the auto- 
matic dictionary replaces each Russian word wij with 
an entire dictionary entry Wij for that word on mag- 
netic   tape,   i.e.,   Wij   =   Td(wij).      When   wij   is  a   punc- 

tuation mark or special symbol, Td replaces the symbol 
with a “dummy” dictionary entry Wij containing only 
that symbol and an appropriate amount of fill. Each 
regular dictionary entry is presumed to contain a Rus- 
sian word, a complete set of English correspondents 
for that word, and coded grammatical data character- 
izing the Russian word and its correspondents in de- 
tail. Entries from the Harvard Automatic Dictionary, 
printed from magnetic tape, are shown in Fig. 1. A 
typical Russian word is shown transliterated and 
marked α, the English meanings are marked β, and the 
coded data are marked γ. Part of the coded data, for 
example, reads ND11N100. These characters convey 
the information that the word притяжение functions 
as a noun (N), that it is declinable (D), that it be- 
longs to a certain subclass of inanimate nouns (II), 
that it is neuter (N), that it functions in the singular 
only (1), and that it has no special forms (00). The 
other code characters, N 10.00, A0, and A1, indicate 
other pertinent properties of the word.6 

The word-by-word transformation of the automatic 
dictionary Td induces a transformation on the sen- 
tences. Each sentence sj is replaced by a set of con- 
catenated dictionary entries Sj = Wij called an aug- 
mented  sentence.        The   basic    research   output    of   an 
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FIGURE 1 
ENTRIES IN THE HARVARD AUTOMATIC DICTIONARY 



 

FIGURE 2 
MACHINE-PRODUCED WORD-BY-WORD TRANSLATION, AFTER POST-EDITING 

automatic dictionary is the set of augmented sentences 
S1,S2 S3, . . .,Sp recorded on magnetic tape. This output 
will be called the augmented text for the given corpus. 
(In earlier publications, it has sometimes been referred 
to as the text-ordered sub-dictionary.4) The augmented 
text contains both the original textual data and the 
additional lexical data present in the dictionary. It is 
the logical input to any further automatic process that 
improves the translation by performing syntactic or 
semantic transformations. 

Word-by-word translations produced by an auto- 
matic dictionary can be converted into smooth and 
idiomatic translations by post-editors familiar with the 
technical field of the material translated and having a 
slight knowledge of Russian.4,5 A post-edited section 
of a word-by-word translation is shown in Fig. 2. The 
print is produced by a machine program that edits the 
data in an augmented text into a readable format. The 
post-editor has drawn arrows on the machine-pro- 
duced print indicating a choice of English correspond- 
ents and word order. He has also inserted some short 
English words and has indicated other modifications 
in the printed text. At the date of this writing, about 
40,000   running   words   of   Russian  text   have  been  trans- 

lated with the Harvard dictionary and post-edited in 
this manner. 

The post-editor effectively behaves like a classical 
“black box” of electrical circuit theory. He determines 
a syntactic and semantic transformation Ts that carries 
the word-by-word translation into a smooth and idio- 
matic translation. Although the output of this trans- 
formation can be measured for various values of the 
input, the internal operation of the post-editor cannot 
be viewed. While the post-editor may produce perfect 
copy, it does not necessarily follow that he, or anyone 
else for that matter, completely understands the proc- 
ess used in translating. 

The operation of the formula finder is based on the 
machine comparison of augmented texts produced by 
an automatic dictionary and post-edited translations 
of the same texts. The post-edited translation of each 
Sj will be represented by Ej = Ts(Sj) = TsTd(wij) 
where Td is the automatic dictionary transformation, 
and Ts is the transformation determined by the post- 
editor. The formula finder simultaneously examines 
each Sj and its corresponding Ej. It establishes corre- 
spondences   between   the   parallel   texts   and     synthesizes 
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algorithms defining portions of Ts valid for the experi- 
mental corpus. 

The transformation Ts defines only one of the many 
possible mappings of the given Russian corpus into a 
valid translation, namely, that actually used by the 
post-editors. Use of other post-editors, or even the 
same post-editors at different times, would result in 
somewhat different definitions of Ts. The non-unique- 
ness of the post-editing transformation need not be a 
serious problem at present, however, provided that 
steps are taken to insure the self-consistency of Ts. At 
this stage of research, what is desired is a single valid 
system of rules for translating, not a catalogue of rules 
for obtaining all alternative valid translations. Empha- 
sis is therefore to be placed on the use of a fixed set of 
post-editing conventions designed to lead to as simple 
and self-consistent a definition of Ts as possible. 

2.    Translation Algorithms 

A tabular definition of Ts is provided by the list of Sj 
and corresponding Ej. This definition amounts essen- 
tially to a dictionary of sentences in the experimental 
corpus and their translations into English. Since it is 
obviously not possible to store or even to generate all 
meaningful Russian sentences, this definition is not 
useful when it comes to translating other Russian texts. 
What is needed is a factorization of Ts into a product 
of machinable algorithms applicable to situations com- 
monly occurring within sentences. For purposes of 
automatic formula finding, a specific type of factoriza- 
tion is assumed: 

Ts = A1A2A3A4...An (1) 

where the Ar are elementary transformations having 
the Wij as their arguments; they are called basic 
algorithms. 

A.      THE  LOGICAL  STRUCTURE  OF  BASIC 
ALGORITHMS 

The basic algorithms to be derived by the formula 
finder are presumed to have a certain logical structure, 
the motivation for which has been given elsewhere.2,4 

It must be possible to state each Ar algorithm in a 
form similar to that of a logical implication: 

Dr:Wr  → Br (2) 

where Dr and Wr are open sentences* stated in the 
language of a first order logical calculus, and Br 
is an editing action. When translating by machine, the 
action Br is to be taken in textual contexts where logi- 
cal propositions corresponding to Dr and Wr are both 
true. The distinction between Dr, called the deter- 
miner formula, and Wr, called the working formula, 
is treated in Ref. 2. Roughly speaking, Dr states the 
general condition for applicability of a given algorithm 
(for example, the presence of a genitive noun), while 
Wr  contains   the   detailed   logic   of   the   algorithm.     Both 

* Open sentences are logical entities sometimes referred to in the 
literature as statement matrices or propositional functions. The usage 
followed here is that suggested by Quine in Ref. 7. 

Dr and Wr are compounded out of certain admissible 
predicates and the usual connective functors of the 
propositional calculus: • for and, ∨ for or, and ~ for 
not. 

The predicates used in the Dr and Wr formulas 
must be functions of the Wij. A typical predicate 
might, for example, correspond to the statement: “wij 
is a verb.” At a given position in an augmented Rus- 
sian text, the values of i and j are fixed numbers and 
the predicates correspond to propositions that are 
either true or false. In other words, textual position 
serves as a basis for quantifying the i and j variables 
in open sentences while translating. It is sometimes 
convenient to use a single name to denote either a 
predicate or any of the propositions associated with 
that predicate for specific values of i and j. Accord- 
ingly, the term variable will be used to denote either 
a predicate or any of the binary valued propositions 
obtainable from it by assigning particular values to 
i and j. Variables will be represented by the symbols 
φ1,φ2,φ3, ... φn, etc. The specification of an admissible 
variable at a given text position is the truth value of 
the proposition. Only variables that can be specified 
automatically are admissible; the automatic specifica- 
tion of variables is discussed in part 4 of this paper. 

At each contextual position, Dr and Wr become 
closed sentences that are either true or false. The 
truth values of the closed sentences are determined by 
the specifications of the component variables. The 
truth value associated with a given formula in a given 
context will be called the evaluation of the formula 
for that context. 

From the viewpoint of automatic formula finding 
and testing, it is desirable to search for algorithms that 
are free of interaction, algorithms that can be derived 
and studied in isolation from one another. A sufficient 
condition for the independence of two algorithms Ar 
and Ar , is that they commute, i.e., that ArAr, Sj = 
Ar,ArSj for every Sj. It is possible to give examples of 
noncommuting basic algorithms, in particular, algo- 
rithms involving permutations of word order. For ex- 
ample, suppose that the action transformation E(i-1,i) 
leads to the exchange of the translations of the (i-l)st 
and ith text words. The algorithms Dr:Wr → E(i-l,i) 
and Dr:Wr → E(i,i + l) obviously do not commute if 
there are values of i and j that make both Dr and Wr 
true propositions. 

The problem of algorithm noncommutativity can 
be greatly alleviated by restricting the types of ad- 
missible modifications that can be made while post- 
editing. If the post-editing transformation Ts is to be 
approximated by a product of commuting algorithms, 
then it must be kept as simple, straightforward, and 
self-consistent as possible. The post-editing instruc- 
tions listed in Part 3 of this paper are framed with this 
objective in mind. In particular, word order inter- 
changes are discouraged. Even assuming restrictions 
on Ts, however, it may still not be possible to express 
the complete transformation Ts as a product of com- 
muting   basic   algorithms.      The   primitive   formula  finder 
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discussed here can synthesize only a single basic algo- 
rithm at a time. The validity of each derived algorithm 
will therefore depend to some extent on whether it is 
free of interaction with the others. 

B. A  SAMPLE  TRANSLATION  ALGORITHM 

Most of the syntactic  and  semantic algorithms  pro- 
posed in the literature of machine translation can be 
stated as basic algorithms or as chains of basic algo- 
rithms.   For  example,  a  rule  selected  out  of  several 
given by Fargo and Rubin will be considered: 8,* 

“Rule number III—‘Translation of genitive suffix’ 
1.    Is   immediately   preceding   item:    a   noun 
without К, personal pron. or participle with a 
noun function? 

(a) If yes, translate suffix by of 
(b) if no, see 2. . . ." 

Predicates φ, involved in the algorithm are: 
N(i)       wij  is a Russian noun 
G(i)       wij is in the genitive 
“K”(i)   wij is the Russian word “К” 
PP(i)     wij  is a personal pronoun 
PA(i)     wij is a participle 
NF(i)     wij can function as a noun 

(3) 
Since the same rule holds for all sentences, the in- 

dex j is suppressed in the symbolic names for the 
predicates. Information enabling the automatic specifi- 
cation of each of these variables is present in the form 
of grammatical codes in the entries of the Harvard 
Automatic Dictionary. The indicated action Br can 
also be assigned a symbolic name, INS(xxx,i) standing 
for insert the string of characters xxx before the trans- 
lation of wij. When applying the rule to nouns, the 
determiner formula is N(i) • G(i). The complete 
basic algorithm is: 
N(i) • G(i) : [N(i-l) • 

~ “K” (i-2) VPP(i-l) VPA(i-l) • NF(i-l)] 
→INS(of,i)     (4) 

C. TRIAL   TRANSLATION   AND   FORMULA   FINDING 

The language of the logical calculus is simple and 
mnemonic, and appears to be well suited for the for- 
mulation of translation algorithms. A computer pro- 
gram that interprets formulas stated in this language 
is currently being used at Harvard as a tool for re- 
search on Russian syntax. The program goes through a 
large corpus of augmented text and selects all word 
contexts that satisfy a given formula. The contexts are 
then automatically edited, printed, and studied by 
linguists.† A design for a more advanced system that 
uses the language of basic algorithms, called trial 
translator, has been proposed elsewhere.2 The trial 
translator applies experimental basic algorithms to 
augmented    texts    in   order   to   produce   improved   trans- 

* This algorithm is mentioned for illustrative purposes only; the 
present writer does not assert that it is necessarily valid. The expres- 
sion noun without K will be taken to mean noun not preceded by the 
Russian preposition К, but the writer is not certain that this is the 
meaning intended by the authors of the algorithm. 

† The context-selecting program was written by W. Bossert. 

lations. Its operation is based on the automatic as- 
sociation of basic algorithms with dictionary entries, 
the automatic specification of variables, and the auto- 
matic evaluation of formulas. 

The proposed formula finder and trial translator 
systems are compatible; the former enables the semi- 
automatic derivation of basic algorithms, the latter 
enables the automatic testing of such algorithms. When 
a linguist wishes to derive an algorithm, he furnishes 
the formula finder with a definition of the action Br 
that he wishes to study, a determiner formula Dr for 
that action, and a list of variables φ1, φ2, ...φn that he 
feels might be of importance in determining that ac- 
tion. The formula finder compounds the given vari- 
ables into a working formula Wr if it is at all possible 
to do so, thus defining a complete basic algorithm 
Dr:Wr → Br. The basic algorithm is produced in both 
a readable format for human inspection and a ma- 
chinable format for input to the trial translator. In- 
formation feedback relationships will exist between 
the formula finder system, the trial translator system, 
and the monitoring human linguists; these are dis- 
cussed in Part 5 of this paper. 

The power of an algorithm synthesized by the for- 
mula finder will depend on whether the most import- 
ant lexical variables are included in the list φ1, φ2, ...., 
φn. A derived working formula, when taken together 
with the given Dr, will always describe sufficient con- 
ditions for executing the given action Br in the experi- 
mental corpus. In some cases, however, a derived Wr 
might describe both necessary and sufficient conditions 
for consummating the action Br, given that Dr is true. 
Algorithms containing such working formulas will be 
called maximal since they cannot be improved insofar 
as the experimental corpus is concerned. In trial trans- 
lating, both maximal and nonmaximal algorithms can 
be used; a single action Br, can occur in several algo- 
rithms having different determiner and working for- 
mulas. 

3.    The Preparation of Parallel Texts 

The proposed formula finder system is block-dia- 
grammed in Figs. 3 and 4. The process divides natu- 
rally into two parts. The first part, illustrated in Fig. 
3, is concerned with the preparation of parallel texts; 
the second part is concerned with the machine deriva- 
tion of basic algorithms (Fig. 4). 

The grist from which the formula finder is to syn- 
thesize algorithms is a large and representative corpus 
of Russian technical text. This corpus must be proc- 
essed by an automatic dictionary and be available in 
the form of augmented texts recorded on magnetic 
tape. Machine-printed word-by-word translations 
must also be prepared from the augmented texts and 
made available for post-editing. Since the derived 
formulas will be strictly valid only for the sentences in 
the given corpus, it is important that the corpus be as 
extensive and representative as possible. Initially, 
there might be advantages to covering one or two 
technical    fields    in    depth,    say   electronics   and   instru- 
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FIGURE 3 
THE PREPARATION OF PARALLEL TEXTS 

mentation, and excluding material from other fields. 
Later, after a certain number of fundamental algorithms 
have been found and tested, the corpus could be ex- 
tended to cover other technical fields having their 
own particular idioms and constructions. 

Our experience indicates that post-editing can 
readily be accomplished by drawing lines and enter- 
ing information on machine-produced prints like that 
shown in Fig. 2. The information on a post-edited 
print can rapidly be transcribed into conventional 

  

 



running format by a typist who simply copies the 
words at the heads of arrows. 

A.      POST-EDITING   TEXTS 

Post-editors must be confined to making transforma- 
tions that are reasonably consistent and that can po- 
tentially be automatized through the use of commuting 
basic algorithms. Rules must therefore be provided 
that limit the scope of Ts. The formulation of a con- 
cise set of post-editing rules must await the detailed 
designing and programming of a working system. 
Nevertheless, it is possible to cite tentative rules that 
illustrate the types of transformation that can most 
probably be accommodated: 

Post-editing Rules Governing Text Transformations 
(1) The original Russian word order should be pre- 

served whenever it is at all possible to do so and still 
obtain a clear translation, even when a loss of elegance 
results.   For   example, . .  .  колебаний  напряжения 
триггера . . . should be translated ... of the oscilla- 
tions of the voltage of the trigger . . . rather than by 
the smoother inverted construction . . . of the oscilla- 
tions of trigger voltage ...  .In any event, the transla- 
tion should be no more sophisticated than a sentence- 
by-sentence translation. The translations of words can 
be moved about within a sentence when this is abso- 
lutely necessary, but they must never be moved from 
one sentence  to  another.  Naturally,  the  sequence  of 
sentences must also be preserved. 

(2) Normally, the English words used in the post- 
edited text should be selected from the correspondents 
printed   in  the  word-by-word   translation   or   from   a 
special list of short particle words. The list of particles 
is   treated   in  post-editing   rule   (4).   Printed   corre- 
spondents  may  be  modified   according   to  rule   (5). 
Now and then  it may not be possible  to translate  a 
Russian   word   correctly   using   the   printed   English 
correspondents,  or  the  word  might be  missing from 
the   dictionary   and   shown   transliterated   instead   of 
translated. When such is the case, the correct English 
correspondent   should   be   written   directly   under   the 
existing English correspondents, if any, for the word 
concerned. 

(3) Any word can be given a null translation; i.e., 
no translation of it need appear in the post-edited copy. 

(4) Certain  special  short words,  given  on   a  list 
furnished to the post-editor, can be inserted as needed 
in  the  post-edited  translation.   Among  the  words   on 
this list are: 
 

(a) Forms of the verb to be, 
(b) Articles such as  the, a, and an, 
(c) English prepositions  sometimes rendered  in 

Russian by case endings, for example, to, of, 
for, by, etc. 

(5) The form of a printed English correspondent 
can be modified so that it correctly represents the pro- 
per  number,  person,  mood,  tense,  etc.   For  example, 
s, or es can be added to a noun form to make it plural, 
ing might be added to a verb in order to generate a 
participle, etc. 

(6) Commas,  colons,  and  semicolons  can  be  in- 
serted   or   deleted   when   an   absolute   necessity  for   such 

a change exists, but the original sentence structure 
should be retained insofar as this is possible. 

(7) In some cases, it may be possible to translate a 
passage only awkwardly if rules (1)-(6) are followed. 
If an awkward translation made according to the rules 
is nevertheless accurate and understandable, it should 
be retained in the post-edited copy. The post-editor 
has the option of following such an awkward passage 
with a superior handwritten translation made in viola- 
tion   of  rules   (1)-(6),   provided   that  the  improved 
version of the passage is enclosed within special sym- 
bols, say dollar signs, for later machine identification. 

(8) In some cases, it may be absolutely necessary 
to violate one of the rules (1)-(6) in order to trans- 
late a word,  phrase  or sentence  adequately.  In  such 
cases the rules can be violated, but the affected por- 
tions of the text must be surrounded by special sym- 
bols, say asterisks. 

Rules (7) and (8) provide means for preserving 
information that cannot initially be handled by the 
machine system. This information can be automatically 
retrieved for processing at a later date. These two rules 
also allow scholars and translators who take pride in 
their work to complete usable translations without 
doing violence to their aesthetic senses. The post- 
edited translations should be of sufficiently high qual- 
ity so that only a small additional amount of editing is 
required to prepare them for publication. 

The text sample of Fig. 2 was post-edited accord- 
ing to the rules just enumerated. The post-editor has 
made a change in word order according to rule (1), 
added new English correspondents according to rule 
(2), deleted the translations of homographic Russian 
words according to rule (3), inserted short words ac- 
cording to rule (4), altered existing correspondents 
according to rule (5) and deleted a comma according 
to rule (6). It was not necessary to resort to the escape 
provisions of rules (7) or (8). The transcribed pass- 
age reads fairly smoothly: 

The comparison of results of measurements, car- 
ried out over a large interval of time, leads even 
to the supposition that the speed of light changes 
with time (footnote 6).  It is therefore desirable 
to introduce a further increase in the precision of 
measurement of the speed of light . . . 

For the purpose of simplifying Ts and thus facilitat- 
ing speedy convergence to a valid set of algorithms, 
it  may  be  desirable  to  adopt  even  more  restrictive 
post-editing rules than those already suggested. These 
rules could even go so far as to require the uniform 
treatment   of   certain   specific   grammatical   situations. 
Problems   of   systematizing   the   post-editing   process 
have been discussed elsewhere, and specific procedures 
designed to insure a maximum degree of consistency 
have been suggested.9 Initial experiments in automatic 
formula finding might well be based on the use of a 
relatively small text corpus that has been systematically 
post-edited according to such a rigid set of rules. 

B.       THE    TRANSCRIPTION    OF    POST-EDITED   TEXTS 

A strict word-by-word cross-identification between 
the transcribed post-edited text and the augmented 
text is required for the operation of the formula finder. 
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That is, the machine must be able unambiguously to 
identify the individual English words in the post- 
edited text with the Wij entries in the augmented text. 
The necessary cross-identification can be effected 
automatically, but only if some additional information 
relating to word order changes is supplied to the 
machine. This information can be supplied by the 
typist who transcribes the post-edited text back onto 
magnetic tape, and can be encoded along with the 
text itself. The coding scheme should enable resolution 
of all ambiguities due to skipped words and changes 
in word order, but yet should be as simple as possible. 
The typist might, for example, be directed to observe 
the following instructions for transcribing and encod- 
ing texts: 

Instructions for Transcribing Post-edited Texts onto 
Magnetic Tape 

(1) Explanation of Format. Machine printing appears 
in five fixed positions across each line of text; each of 
these positions holds an entry. An entry may contain 
several English correspondents arranged in a column, 
a punctuation mark, or a comment. An English cor- 
respondent  written   by   a   post-editor   directly   under 
the machine printing for an entry is considered to be 
part of that entry. Short English words written in by 
a post-editor, such as the, an, a, etc., are considered to 
be insertions; they are not part of any entry. 

(2) Instructions.   Type   the   English   words   and 
punctuation  marks  at the heads  of the  arrows  in a 
normal running format. The arrow will normally pro- 
ceed from left to right across the page, selecting an 
English  correspondent  out  of  each  entry.   When  the 
arrow skips forward over one or more entries or circles 
backwards, it is necessary to insert a position number 
in the text according to the following rule: 

When the arrow skips forward or circles back- 
wards, insert in the corresponding position in the 
transcribed text a number prefixed by a plus or 
minus sign indicating the relative position of the 
next entry selected. The number must be sur- 
rounded by parentheses for machine identifica- 
tion. For example, if the arrow skips over two 
entries, the “(+3)” is to be inserted. The posi- 
tion number “(-2)” means two entries back, etc. 
Include any short insertion words in the trans- 
cribed copy, but do not count them in computing 
the position number. 

If the convention for recording position numbers is 
followed in transcribing the sample post-edited text of 
Fig. 2, the following copy is obtained: 

“THE COMPARISON OF RESULTS OF MEASUREMENTS, 
CARRIED   OUT   OVER   (+2)   A   LARGE   INTERVAL 
(+2) OF TIME, LEADS  (+2)  EVEN TO THE SUP- 
POSITION (+2) THAT THE SPEED OF LIGHT (+3) 
CHANGES WITH (+2) TIME (FOOTNOTE 6).  (+2) 
IT IS THEREFORE DESIRABLE  (-2)  TO INTRODUCE 
(+3) A FURTHER INCREASE IN THE PRECISION OF 
MEASUREMENT OF THE SPEED OF LIGHT . . .” 

     Since a word-by-word translation is simply a ma- 
chine-edited version of an augmented text, the entries 
in the former are in one-to-one correspondence with 
those    in   the   latter.     The    position   numbers    therefore 

define a precise correspondence between the words se- 
lected by post-editors and the associated entries in the 
augmented text. 

C.      AUTOMATIC   CROSS-IDENTIFICATION 

The typist will make occasional mistakes while tran- 
scribing the large corpus of post-edited text onto 
magnetic tape. If position numbers are assigned incor- 
rectly or if words are mistakenly left out or transposed, 
there will be “phase” errors in the encoded corre- 
spondence between the tape containing the post- 
edited text and that containing the augmented text. A 
machine program called cross-identifier is therefore 
included in the flow pattern of Fig. 3 to check the 
word-by-word association given by the position num- 
bers. It verifies that the English correspondents used 
by the post-editors are, in the majority of cases, also 
contained in the associated Wij entries. 

Automatic cross-identification is complicated by the 
fact that the forms of English words may be modified 
according to post-editing rule (5). Before English 
words in the post-edited text can be compared with 
words in the augmented text, they must all somehow 
be reduced to standard forms that can be matched 
automatically. This can be accomplished by auto- 
matically removing standard inflectional endings, like 
s, es, ing, etc., from English word forms, thereby re- 
ducing the inflected word forms to more or less stand- 
ard stem forms. 

Machinable rules for the automatic splitting of word 
affixes, a process sometimes called “inverse inflection,” 
have been developed for Russian, a language that has 
a much more complicated system of suffixes than Eng- 
lish.10,11 The development of similar rules for the auto- 
matic inverse inflection of English words should pose 
no fundamental linguistic problems. Research in this 
direction is presently underway at the Harvard Com- 
putation Laboratory. The projected cross-identifier 
program will incorporate the necessary rules for sep- 
arating English stems and affixes. Each English word 
in both the post-edited text and the augmented text 
will be automatically split into a stem and an affix. 
The cross-identifier will then compare only stems; 
each stem in the post-edited text will be matched 
against the stems originating from the corresponding 
Wij entry. The reduction of words to stems will thus 
enable an automatic check on the typist’s position 
number coding, even when English forms are modified 
according to post-editing rule (5). 

The list in “insertion” words, a to, of, etc., is to be 
carried in machine memory during the cross-identifi- 
cation process. The cross-identifier program will recog- 
nize these words as exceptions, and will not attempt 
to locate them in the Wij entries. The machine can 
therefore always check the word-entry association en- 
coded by the typist except when a new English mean- 
ing is assigned to an existing entry. 

When the cross-identifier finds an isolated word in 
the post-edited text that is not in the corresponding 
Wij   entry,   it   assumes   that   the   word   is   a   new  one as- 
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signed according to post-editing rule (2), and that the 
association encoded by the typist is correct. When sev- 
eral running words are found that cannot be matched 
with the corresponding Wij entries, the cross-identifier 
assumes that a phase error or unusual idiomatic con- 
struction is present. The affected sentence is deleted 
from the experimental corpus and recorded on a sepa- 
rate tape, and the machine proceeds to the next sen- 
tence. Since post-editing is always done on a sentence- 
by-sentence basis according to rule (1), errors in 
identification will always be localized. The cross- 
identifier will also delete portions of the translation 
made in violation of post-editing rules (l)-(6) and 
enclosed in dollar signs or asterisks, and record them 
on another separate tape. The separate tapes can 
eventually be printed and the problematic sentences 
subjected to further study. 

The result of cross-identification is a table of cor- 
respondences between the individual words in the 
post-edited text and the Wij entries in the augmented 
text. This tabular correspondence might be automat- 
ically encoded by inserting appropriate markers into 
the Wij entries themselves. The table provides a word- 
by-word definition of the transformation Ts. This is a 
more finely structured definition of Ts than the list of 
corresponding Sj and Ej , but is still not one that can 
be practically used for translating other texts. The 
second portion of the formula finder system, block- 
diagrammed in Fig. 4, is concerned with deriving the 
Ar, the basic algorithms in the assumed decomposition 
of Ts. 

4.    The Synthesis of Basic Algorithms 

Parallel texts need be prepared only once by the proc- 
ess of Fig. 3; thereafter they can be used for the de- 
rivation of any number of basic algorithms. The syn- 
thesis of each algorithm requires a separate iteration 
of the process diagrammed in Fig. 4. Prior to a given 
algorithm-synthesizing run, a linguist must furnish the 
computer the following clues concerning the desired 
algorithm: 

(1) A definition of Br, the action portion of the de- 
sired algorithm.  In  the  sample  algorithm,  the 
action   was   INS (of,   i);   other   typical  actions 
might  relate  to  the   selection   of  a  particular 
English correspondent, the inflection of a cor- 
respondent into the plural, etc.2 

(2) A determiner formula Dr for the desired algor- 
ithm.   This   is   the   portion   of   the   algorithm 
known beforehand; it limits the machine to in- 
vestigating textual situations known to be per- 
tinent.   The   determiner  N (i) • G(i)   given   in 
the sample algorithm would limit the formula 
finder to investigating the insertion of of before 
genitive nouns, and a derived algorithm would 
not be complicated by other of occurrences. 

(3) A  set   of   predicate   “variables”   φ1, φ2, ... φn 
having the Wij as their arguments. They are, 
in the opinion of the monitoring linguist,  the 
building blocks of a potential working formula 
Wr. The list may include many more variables 
than    will    actually   be   needed    in    the   formula; 

the machine will use only those variables that 
are actually required. 

A.   THE   AUTOMATIC  SPECIFICATION  OF  VARIABLES 
AND  EVALUATION  OF   FORMULAS 

Variables in the determiner formula and in the set 
φ1, φ2, ... φn must be admissible, i.e., provisions must 
exist for automatically specifying their truth values in 
all textual instances. Only variables which relate to 
the morphology of Russian or English words or to 
lexical data present in the Wij entries of an augmented 
text can be specified automatically. 

Certain predicate variables can be specified by 
means of the comparison of a known string of charac- 
ters, given by the variable, with other strings of char- 
acters in the Wij entries. Such predicate functions 
will be called string variables. In the Harvard diction- 
ary, for example, entries contain coded “part of speech” 
markers, N, A, etc. (standing for noun, adjective, etc.) 
in a fixed field, character position 313. In order to 
specify N(i+2), then, it is sufficient to investigate 
character position 313 in the second entry following 
that under principal consideration. If the character in 
this position is N, the specification is 1 (true), other- 
wise the specification is 0 (false). The “part of speech” 
variables, then, are string variables, as are indeed all 
the variables in the sample list (3). Since string vari- 
ables deal directly with the available lexical and 
morphological units, it is possible to formulate any 
admissible basic algorithm in terms of them. 

A relatively simple computer routine can be de- 
signed for the automatic specification of string type 
variables. Indeed, the presently operating context 
selecting program incorporates a specifier routine capa- 
ble of handling monadic string variables like those in 
the sample list (3). A more powerful string-variable 
specifier routine, capable of handling relational vari- 
ables and variables with special quantifiers, is a re- 
quired component of both the trial translator and 
formula finder systems.2,12  Admissible string variables 
are those that can be defined by coded expressions 
which this routine is capable of interpreting. For ex- 
ample, the coded expressions for a monadic variable 
might contain: 

(1) A key. This is a string of one or more known alpha- 
numeric characters.  The characters might represent 
part or all of a Russian or English word, or a gram- 
matical code marker. 

(2) A   major   coordinate.   This   specifies  the   entries   in 
which search is to be made.  The major coordinate 
is a relative coordinate, and is 0 for the augmented 
text entry under principal consideration, -1 for the 
preceding entry, +1 for the following entry, etc. The 
major coordinate may denote either a fixed entry or 
a set of entries that must be searched. Search might 
be made,  for example,  in  all entries  following  the 
entry under primary consideration but preceding the 
next   period.   Provisions   should   be   made   for   both 
backward   and   forward   search,   with   limits   deter- 
mined by a secondary key. 

(3) A  minor  coordinate.  This  specifies  the  location  or 
locations   within   an   entry   that   must   be  checked by 
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the specifier.  It can be a number which denotes  a 
specific field within an entry. In the Harvard Auto- 
matic  Dictionary,  for example,  English  correspond- 
ents,   Russian  stems,   and  coded grammatical   data, 
with  minor  exceptions,   occupy   fixed   fields.    The 
minor   coordinate   might   instead   denote   character 
positions that are search limits within an entry. 
The  string   in   the   sample   propositional    function 
N(i+2)  is N; the major coordinate is +2, the minor 
coordinate is 313. 

When a monadic string variable is being specified, 
the program searches the data positions in the Wij 
entries defined by the major and minor coordinates. 
The strings thus obtained are compared with the key 
string. When a search is successful, the specification of 
the variable is 1, otherwise it is 0. Specifier-code ex- 
pressions can also be used to define relational vari- 
ables. For example, a dyadic variable can be defined 
by two keys, the corresponding major and minor co- 
ordinates, and an indication of the relation involved. 
Linguists should be encouraged to name variables 
mnemonically, for example, by writing A(i), ADJ(i), 
ADJECTIVE(i), etc. Such mnemonic names need be 
converted into specifier-code instructions only once, by 
a programmer, and the correspondence retained in an 
automatically-readable cross-reference table. The con- 
version of variables from mnemonic to specifier-code 
form can thereafter be done automatically. 

A string variable specifier program is a component 
of the specifier-evaluator-tester program shown in the 
diagram of Fig. 4. Special specifier subroutines might 
also be included in this program for economically 
specifying predicate functions more complicated than 
string variables. The specifier-evaluator-tester pro- 
gram must also contain provisions for the automatic 
truth-value evaluation of determiner formulas. In a 
given context, the evaluation of a logical formula is 

determined by the specifications of the variables con- 
tained in that formula. There are several well known 
methods for evaluating logical formulas, any one of 
which can readily be programmed.12,13,14 Our experi- 
ence at Harvard indicates that a particularly simple 
evaluation process can be used if a formula is stated 
in disjunctive normal form, as a sum (∨) of products 
(•) in which only single variables are negated. An 
evaluator program now operating at Harvard requires 
only about a hundred lines of Univac coding.12 

Besides provisions for the automatic specification 
of variables and evaluation of formulas, the specifier- 
evaluator-tester must also incorporate a simple sub- 
routine capable of verifying whether the action Br has 
been taken at any given position in the post-edited 
text. This routine should be capable, for example, of 
determining whether of is inserted at any given posi- 
tion. It is in essence another specifier routine, one that 
operates on the post-edited text. It will be called the 
action tester. 

B.      THE     OPERATION     OF     THE      SPECIFIER-EVALU- 
ATOR-TESTER 

The inputs to each run of the specifier-evaluator- 
tester are the cross-identified parallel texts and a par- 
ticular set {Dr; Br; φ1, φ2, ... φn. A skeletal flow 
chart of the program is given in Fig. 5. The pro- 
gram simultaneously advances the two tapes contain- 
ing the parallel texts; the cross-identification codes 
are used to keep the tapes in phase. As each new 
Wij entry is encountered, the program specifies the 
truth values of the variables in Dr for the given 
values of i and j. The program then evaluates the 
truth value of Dr in terms of the truth values of the 
component propositions. When Dr is not true, no fur- 
ther action is taken in the given context; the parallel 
texts are advanced (within a given sentence i+1 re- 
places i), and Dr is evaluated for the next Wi}. When 
Dr is true the program executes certain specifying, 
testing and incrementing operations before proceeding 
to the next item. These operations will be described, 
but first a brief paragraph will be devoted to a review 
of a topic of elementary logic, truth value configura- 
tions.7,14,15 

There are 2n possible configurations of truth values 
of the variables φ1, φ2, ... φn ; these correspond to the 
rows in the schematic listing of Table 1. A 1 in any 
position is here taken to mean that the corresponding 
φv is true in the given configuration, a 0 that it is false. 
Thus, in the first configuration all the φv are false; in 
he last all the φv are true. The configurations are 
uniquely identified by the binary patterns of the 1's 
and 0's; each row in the configuration table corre- 
sponds to a binary number k between 0 and 2n—1. The 
number k can therefore be used as a name for the cor- 
responding configuration of variables. 

Two sets of index registers, {Xk} and {Yk}, are set 
up and retained within machine memory during the 
specifier-evaluator-tester run. The values of k corre- 
spond  to   the   configurations   of   the   φ ,   that  are actually 
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TABLE 1 

CONFIGURATIONS OF LOGICAL VARIABLES 

k       φ1, φ2, φ3, ..., φn-2, φn-1, φn Interpretation 

0     0     0     0     0     0     0     All φv  are false. 
1     0     0     0     0     0     1     Only φn is true. 
2     0     0     0     0     1     0     Only φn-1  is true. 
3     0     0     0     0     1     1 
4     0     0     0     1     0     0 
5     0     0     0     1     0     1 
.      .      .      .      .      .      . 
.      .      .      .      .      .      . 
.      .      .      .      .      .      . 

2n-5 1     1     1     0     1     1 
2n-4 1     1     1     1     0     0 
2n-3 1     1     1     1     0     1     All φv are true except φn-1, 
2n-2 1     1     1     1     1     0     All φv are true except φn. 
2n-l 1      1    1     1     1     1     All φv  are true. 

encountered in the text corpus for contexts that make 
Dr true. When Dr is true, the variable specifier rou- 
tines are used to determine the truth values of each 
of the φ1, φ2, ... φn. The pattern of 1's (trues) and 0's 
(falses) thus obtained defines a logical configuration 
k' that characterizes the state of the φv variables at the 
given textual position. When a given configuration k' 
is thus encountered for the first time in the corpus, the 
machine sets aside two index registers, one for Xk’ and 
one for Yk’, the numbers in both registers being ini- 
tially set to zero. Then, and whenever the same k' 
configuration is encountered in subsequent contexts for 
which Dr = 1, the specifier-evaluator-tester incre- 
ments the number in the Xk' register by 1. 

After an Xk’ register is incremented, the action- 
testing routine is called into play. It ascertains whether 
or not the post-editor has taken the given action Br 
in the post-edited text. The position to be tested in 
the post-edited text is that corresponding to the con- 
text for which Dr = 1; it is located by use of the 
cross-identification table. If no action was taken, the 
program simply goes on to the next Wij entry, evalu- 
ating Dr again, etc. If the action Br was indeed taken, 
the program increments the Yk’ register by 1 before 
going on to the next item. The specifier-evaluator- 
tester program goes through the entire corpus in this 
manner, evaluating Dr, specifying φ1, ... φn and se- 
lectively incrementing the Xk and Yk registers. 

C.  THE OPERATION OF THE FORMULA SYNTHESIZER 

The input to the final machine program shown in Fig. 
4, called formula synthesizer, is the set of tally counts 
in the Xk and Yk registers. Its output is a valid maximal 
or nonmaximal basic algorithm, or a clear indication 
that important variables are missing from the list 
φ1, φ2, ... φn . 

The first operation performed by the formula syn- 
thesizer is the computation of a third set of numbers 
{Zk}. For Xk = 0, Zk are undefined; for Xk ≠ 0, Zk 
are defined as Zk = Yk/Xk. From the counting process, 
is follows that defined values of Zk satisfy 0 ≤ Zk ≤ 1. 
The   Zk   define   the   desired   working   formula   Wr.    It   is 

convenient to discuss the synthesis of formulas in terms 
of four different types of patterns that can be described 
by the Zk: 

PATTERN TYPE 1: All Zk are defined and either 0 or 1. 

When a pattern of this type is present, the formula 
synthesizer has found a maximal algorithm, one that 
cannot be improved insofar as the given text corpus 
is concerned. The vector of binary elements [Z1, Z2, 
Z3, . . ., Z2n-1] is itself a representation of the desired 
working formula.* Since the Zk are all either 0 or 1, 
each configuration corresponds to either doing or not 
doing the action, with no equivocation. The formula 
can be expressed in disjunctive canonical form by tak- 
ing a sum of the logical products corresponding to the 
configurations for which Zk = 1. Each product is ob- 
tained by conjoining all the n variables, negating just 
those to which a 0 is assigned in the configuration con- 
sidered. For example, a simple hypothetical situation 
is illustrated in Table 2. The working formula corre- 
sponding to the Zk is Wr = ~ φ1 • φ2 • ~ φ3 ∨ ~ φ1 • 
φ2 • φ3 ∨ φ1 • ~ φ2 • φ3. Formulas thus obtained are in a 
so-called “canonical” disjunctive normal form. They can 
often be reduced to simpler normal forms by well- 
known rules of logic.7,14,15 

Certain of the variables initially included in the list 
φ1, φ2, ... φn may not be needed in order to construct 
a valid working formula. Such variables will appear 
in the canonical form of a working formula only vacu- 
ously; they can be readily eliminated in the course of 
reducing the formula to a more minimal normal 
form.17,18,19,20   For   example,   the   formula   ~   φ1  •   φ2 •    
φ3 ∨ ~ φ1  •   φ2  •  ~ φ3 contains the variable φ3 only 
vacuously and is reducible to ~   φ1  •   φ2 . The logical 
rules for formula reduction are rigorous and machin- 
able. A computer program that reduces formulas given 
in disjunctive canonical forms to more economical 
normal forms is being prepared at Harvard; it will 
contain provisions for eliminating vacuous variables.21 

There should be no difficulty connected with pro- 
gramming the necessary formula-reducing rules into 
the proposed formula-synthesizer. 

* The methods for representing and reducing logical formulas 
mentioned in this section are well known in the fields of mathematical 
logic and algebraic switching theory. The basic logical principles are 
treated, for example, in Refs. 7, 14, 15, 16, and 17. Machinable 
methods for reducing logical formulas to minimal normal forms, for 
resolving “don’t care” conditions, etc., are treated in Refs. 17, 18, 
19 and 20. 

TABLE 2 

HYPOTHETICAL PATTERN OF XK AND YK 
LEADING TO A PATTERN OF TYPE 1 

k   φ1              φ2                 φ3  Xk Yk Zk 

0             0             0             0              17              0                0 
1             0             0             1                4              0                0 
2             0             1             0              32            32                1 
3             0             1             1            118          118                1 
4             1             0             0                2              0                0 
5             1             0             1              61            61                1 
6             1             1             0                1              0                0 
7             1             1             1              75              0                0 
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To the extent that the experimental corpus is only 
approximately representative of what can occur in 
Russian technical writing, so also will the algorithms 
synthesized from this data be only approximately 
valid. Before a machine-derived algorithm can be 
finally accepted, then, it must be subject to human 
scrutiny and tested further by a man-machine process 
like that discussed in Part 5 of this paper. 

PATTERN TYPE 2: Defined Zk are either 0 or 1, 
but some Zk are undefined. 

A maximal algorithm can be synthesized when a 
pattern of this type is present, but it is not necessarily 
unique. The undefined Zk are in one sense like the so- 
called “don’t care” conditions of switching theory.17,18,19 

Since configurations corresponding to these Zk do not 
occur in the experimental corpus, it might seem that 
0's and 1's could be assigned to them in any desirable 
manner. In fact, machinable procedures exist for as- 
signing values to Zk for “don’t care” configurations in 
such a way as to simplify the resulting formula.17,19,20 

Assigning such values automatically in this somewhat 
offhand fashion would not, however, be a sound ex- 
perimental procedure. Different formulas would result 
from assigning different sets of values to the undefined 
Zk. While all such formulas would work equally well 
for the experimental corpus, they would behave dif- 
ferently in the event that one of the “don’t care” con- 
ditions actually occurred in another text. If the value 
1 were assigned to a Zk, that should actually have the 
value 0, then the algorithm would erroneously lead 
to the action Br whenever configuration k' is en- 
countered in another text. To be safe, then, it is best 
to adopt a blanket rule for assigning values automati- 
cally; the machine is to assign the value 0 to each of 
the “don’t care” Zk. A synthesized algorithm will then 
not lead to the action Br if one of the “don’t care” 
configurations is encountered in a later text. 

Consideration is being given to the use of a ternary 
valued logic to enable better treatment of the “don’t 
care” conditions. Assigning the value 0 to the unde- 
fined Zk is a “fail-safe” procedure, since the resulting 
algorithm leads to the execution of the action Br only 
in textual situations actually examined in the experi- 
mental corpus. Nevertheless, the effect of a 0 assigned 
to an undefined Zk is the same as that of a 0 computed 
from a nonvanishing Xk. Certain information is there- 
fore not reflected in the algorithm: in the former case 
the configuration was not encountered, in the latter 
case it was encountered and found to have the value 0. 
It may be possible to keep better track of this informa- 
tion by using a three-valued logic, where one of the 
values means “unresolved.” 

PATTERN TYPE 3: Some of the Zk are proper 
fractions, 0 < Zk < 1, but at least one Zk is 1. 

A valid algorithm can be obtained when a pattern 
of this type is present, but the algorithm will be non- 
maximal.     The    fractional    values    of   Zk   correspond   to 

configurations that only sometimes lead to the given 
action in the experimental corpus. Other variables be- 
sides those included in φ1, ... φn must be taken into 
account when these configurations are present. The 
nonmaximal algorithm is obtained by simply rounding 
off each of the fractional Zk to zero, thus giving a pat- 
tern of type 1 or 2 that can be reduced by the methods 
already discussed. 

Most of the algorithms that will be derived in the 
course of initial experiments with the formula finder 
will probably be nonmaximal. It is important to stress 
the fact that nonmaximal algorithms like maximal 
algorithms are “fail-safe” insofar as the experimental 
corpus is concerned. A derived algorithm leads to an 
action Br only for configurations that always lead to 
the action in the experimental corpus. 

PATTERN TYPE 4: Some Zk are fractional 
and no Zk is 1. 

When a pattern of this type is present, no con- 
figuration of the given variables unambiguously leads 
to the given action and it is not possible to synthesize 
a valid basic algorithm from φ1, φ2, ... φn . 

D.       OUTPUTS OF THE FORMULA FINDER 

The outputs of the formula finder are: 
(1) The derived  algorithm,  in  a  readable format. 
(2) The derived algorithm, in a machine-encoded 

format  suitable  as  input to a  trial  translator 
system. 

(3) An edited list of the configurations encount- 
ered, the corresponding Xk and Yk counts, and 
the initial and final values of Zk. 

The first two outputs are only furnished when a 
pattern of type 1, 2, or 3 is present; the third output is 
always produced. The function of the third output is 
to facilitate the human monitoring and control of the 
formula synthesizing process. The counts give an in- 
dication of the relative occurrence frequencies of the 
various configurations. They should enable linguists 
to evaluate an algorithm in terms of the types and fre- 
quencies of the situations encountered. When a pat- 
tern of type 2 is present, a linguist may find reasons 
to assign the value 1 instead of 0 to some of the unde- 
fined Zk. The edited list of configurations should en- 
able him to do so. When a pattern of type 3 is present, 
the edited list will clearly show the configurations with 
fractional Zk. Inspection of the list might give insight 
into new variables that should be added to the list in 
order to obtain a maximal algorithm. When a pattern 
of type 4 is present, pertinent variables are clearly 
missing from the set φ1, φ2, ... φn. Inspection of the 
edited list of Xk and Yk might enable the identification 
of such variables. 

A hypothetical list of configurations and Xk and Yk 
values leading to the sample algorithm (4) is given 
in Table 3, where φ1 = N(i-l), φ2 = “K”(i—2), 
φ3 = PP(i-l), φ4 = PA(i-l), and φ5 = NF(i-l). 
The values of Xk and Yk shown in the table are con- 
cocted   to   illustrate   the   formula   reduction   process;  they 
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TABLE    3 

HYPOTHETICAL TABLE OF Xk AND Yk LEADING TO THE 
WORKING FORMULA Wr = φ1 • ~ φ2 V φ3 V φ4 • φ5 OF THE 

SAMPLE ALGORITHM ( SEE TEXT ) 

                                                                Initial   Change   Final 
k      φ1    φ2    φ3    φ4    φ5     Xk       Yk       Zk        Zk   Zk 

0     0     0     0     0     0 75 6       .08 Rnd        0 
1     0     0     0     0     1       13         0      0                         0 
2     0     0     0     1     0    104         11      .11      Rnd         0 
3     0     0     0     1     1      38         38     1                         1 
4     0     0     1     0     0      13         13     1                         1 
5     0     0     1     0     1      17         17     1                         1 
6     0     0     1     1     0        5          5      1                         1 
7     0     0     1     1     1      11         11     1                         1 
8     0     1     0     0     0      81           0     0                         0 
9     0     1     0     0     1      37           4       .11    Rnd         0 

10     0     1     0     1     0      63         19       .30    Rnd         0 
11     0     1     0     1     1      34         34      1                        1 
12     0     1     1     0     0        3           3      1                        1 
13     0     1     1     0     1      28         28      1                        1 
14     0     1     1     1     0      35         35      1                        1 
15     0     1     1     1     1     60          60      1                        1 
16     1     0     0     0     0   186       186       1                        1 
17     1     0     0     0     1   107       107       1                        1 
18     1     0     0     1     0     91         91       1                        1 
19     1     0     0     1     1     62         62       1                        1 
20     1     0     1     0     0     43         43       1                        1 
21     1     0     1     0     1   111       111       1                        1 
22     1     0     1     1     0   136       136       1                        1 
23     1     0     1     1     1     72         72       1                        1 
24     1     1     0     0     0   194       107        .55    Rnd         0 
25     1     1     0     0     1   109         72        .66    Rnd         0 
26     1     1     0     1     0       0           0       -         Set          0 
27     1     1     0     1     1     26         26       1                       1 
28     1     1     1     0     0     13         13       1                       1 
29     1     1     1     0     1     81         81       1                       1 
30     1     1     1     1     0    30          30       1                       1 
31     1     1     1     1     1    19          19       1                       1 

probably bear little resemblance to those that would 
actually be found in texts. The initial set of Zk forms 
a pattern of type 3. The final column shows the results 
of rounding fractional values of Zk to 0, and assigning 
the value 0 to the undefined Z26. The canonical normal 
form of the resulting Wr formula is too long to be 
listed here; it involves a sum of twenty-three terms, 
each being a product of the five variables. When re- 
duced    to   a   minimal   normal  form  it    becomes φ1   •   ~ 

φ2 ∨ φ3 ∨ φ4 • φ5, the working formula of the desired 
nonmaximal algorithm, 

5.    The Feedback System for Research in Automatic 
Language Translation 

The formula finder is one of the three components of 
a proposed man-machine feedback system for research 
in automatic language translation. The other two com- 
ponents are the trial translator2 and the monitoring 
human linguists. The over-all feedback system is 
block-diagrammed in Fig. 6. Three main feedback 
loops are shown in the diagram; they are labeled L1, 
L2, and L3. The derivation of an algorithm starts with 
loop L1. The humans initially suggest clues to the for- 
mula finder: Dr, Br, and φ1, φ2, ... φn. The outputs of 
the formula finder are examined by the linguists. If 
no basic algorithm is found or if the machine-derived 
algorithm is unacceptable, the set of variables may be 
modified and the formula finding run repeated. This 
iterative process, corresponding to loop L1, can be re- 
peated until an algorithm is tentatively accepted for 
further testing. 

Once an automatically synthesized algorithm is ten- 
tatively accepted, the iterative process of loop L2 is 
called into play. The machine-coded version of the 
derived algorithm is used by the trial translator to 
produce experimental improved translations of Russian 
texts. The linguists examine these translations, and 
perhaps suggest further improvements or changes in 
the algorithm. The improved algorithm is then fed 
back into the trial translator, new experimental trans- 
lations are produced and examined, etc. 

A second type of feedback may also be employed 
within loop L2. Linguists may know of involved gram- 
matical situations not represented in the experimental 
corpus, but pertinent to algorithms being studied. They 
may therefore wish to devise special sentences con- 
taining problematic constructions, or to draw such 
sentences from reference grammars. The task of auto- 
matic formula finding would be greatly complicated if 
such sentences were simply added to the experimental 
corpus. Nevertheless, for the purpose of subjecting 
algorithms known to be basically sound to extreme 
conditions,  the   linguists   may    wish   to   use   the   proble- 
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matic sentences in the final testing stages of loop L2 
Hopefully, the iterative process of loop L2 will thus 
provide for “vernier” adjustments leading finally to a 
valid and useful algorithm. 

Feedback loop L3, might play a role in going from 
one basic algorithm to another. The trial translator can 
produce translations reflecting the product transfor- 
mation Tt = A1A2, . . . , Aq of any number of known 
and tested algorithms. It can be safely assumed that 
for a long time Tt will fall far short of the complete 
syntactic and semantic transformation Ts performed 
by the human post-editor. In the course of time, more 
and more algorithms Aq+1,Aq+2, etc., will be added to Tt. 
At any given time, the printed translation resulting 
from Tt will contain only residual ambiguities that 
should stand out in bold relief. By inspecting the par- 
tially improved translations resulting from a given Tt 
= A1A2, . . . ,Aq, then, linguists might be able to divine 
clues about a basic algorithm Aq+1 that should naturally 
be derived next. It may be possible to express these 
clues  in  the  form of Dr, Br, and φ1, φ2, ... φn   statements. 

If so, the clues may be fed into the formula finder, 
and another algorithm found through the processes of 
loops L1 and L2. 

The machine programs of the proposed formula 
finder must still be written, and some of the manual 
procedures must be worked out in greater detail; 
many interesting questions about automatic formula 
finding still remain essentially unsolved. At present, 
algorithms are being successfully found by more tra- 
ditional methods of scholarly insight, with the machine 
playing a more subordinate role than that illustrated 
in Fig. 6. Nevertheless, the writer feels that automatic 
formula finding is potentially a fruitful area for further 
research in automatic language translation. The logical 
techniques suggested in this paper can readily be 
adopted for formula finding with other pairs of natural 
or artificial languages. The writer also believes that 
these techniques can be extended and used for re- 
search in several allied fields, such as automatic speech 
and pattern recognition, and the empirical study of 
sequential automata. 

Received August, 1959 
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