
[Mechanical Translation, vol.5, no.1, July 1958; pp. 25-41]

A Programming Language for Mechanical Translation†
Victor H. Yngve, Massachusetts Institute of Technology, Cambridge, Massachusetts

A notational system for use in writing translation routines and related programs is
described. The system is specially designed to be convenient for the linguist so
that he can do his own programming. Programs in this notation can be converted
into computer programs automatically by the computer. This article presents com-
plete instructions for using the notation and includes some illustrative programs.

IT HAS BEEN SAID that the automatic digital
computer can do anything with symbols that we
can tell it in detail how to do. If we are inter-
ested in telling a digital computer to translate
texts from one language into another language,
we are faced with two tasks. We first have to
find out in detail how to translate a text from
one language to another. Then we have to "tell"
the computer how to do it. This paper is con-
cerned with the second task. We will present
here a specially devised language in which the
linguist can conveniently "tell" the computer
to do things that he wants it to do.

The automatic digital computer has been de-
signed to handle mathematical problems. It is
able to carry out complicated routines in
terms of a few different kinds of elementary
operations such as adding two numbers, sub-
tracting a number from another number, mov-
ing a number from one location to another, tak-
ing its next instruction from one of two places
depending on whether a given number is negative
or positive, and so on. In order to instruct the
computer to carry out complicated routines,
simple instructions for the elementary opera-
tions are combined into a program. The writ-
ing of a program to carry out even an apparently

† This work was supported in part by the U. S.
Army (Signal Corps), the U. S. Air Force
(Office of Scientific Research, Air Research
and Development Command), and the U.S.Navy
(Office of Naval Research); and in part by the
National Science Foundation.

rather simple procedure can be an exacting task
requiring a high degree of skill on the part
of the programmer.

It has been the custom for the linguist who
wanted to try out a certain approach to mechan-
ical translation to ask an expert programmer
to program his material rather than to learn
the art of programming himself. Besides the
usual inconveniences and difficulties attending
the communication between experts in two
separate fields, this practice has certain more
basic difficulties: Neither the linguist nor the
programmer has been able to be fully effective.
The linguist has not become aware of the full
power of the machine, and the programmer,
not being a linguist, has not been able to use
his special knowledge of the machine with full
effectiveness on linguistic problems.

The solution offered here to these difficulties
is an automatic programming system. The
linguist writes the results of his research in a
notation or language called COMIT, which has
been specially devised to fill his needs. The
programmer writes a conversion program or
compiler capable of converting anything written
in this notation into a program that can be run
on the computer.* Thus the expense, time, and
effort needed to separately program each lin-
guistic approach is saved, and, even more im-
portant, the linguist is given direct access to
the machine. He becomes more fully aware of
its potentialities, and his research is greatly
facilitated.

* This is being done by the programming re-
search staff of the M.I. T. Computation Center.

26 V. H. Yngve

What COMIT Is

COMIT is an automatic programming system
for an electronic digital computer that provides
the linguist with a simple language in which he
can express the results of his researches and
in which he can direct the computer to analyze,
synthesize, or translate sentences. It is cap-
able of being programmed on any general pur-
pose computer having enough storage and appro-
priate input and output equipment. The language
has been devised to meet the needs of the lin-
guist who wants to work in the fields of syntax
and mechanical translation. Some of the lin-
guistic devices and operations that COMIT has
been designed to express are: immediate con-
stituent structure, discontinuous constituents,
coordination, subordination, transformations
and rearrangements, change in the number of
sentences or clauses in translation, agreement,
government, selectional restrictions, recur-
sive rules, etc.

A program written in COMIT consists of a
number of rules written in a special notation.
The computer executes these rules one at a
time in a predetermined order. In seeking an
appropriate notation in which to write the rules,
we were guided by several considerations.
1. That the rules be convenient for the linguist
- compact, easy to use, and easy to think in
terms of.
2. That the rules be flexible and powerful —
that they not only reflect the current linguistic
views on what grammar rules are, but also that
they be easily adaptable to other linguistic views,

A linguist can use the computer in the follow-
ing simple way. He expresses the results of
his linguistic research in COMIT. He tran-
scribes his rules onto punched cards using a
device with a typewriter keyboard. He supplies
text or special instructions to the machine also
on punched cards. He then gives these packs of
cards to an operator and subsequently receives
his results in the form of printed sheets from
the machine.

The way that a COMIT program works in the
computer is shown in figure 1. The rules mak-
ing up the COMIT program can be thought of as
stored in the computer at A. Material to be
translated or otherwise operated on enters the
computer under the control of the rules from
the input B. It is operated on by the rules and
translated in the workspace C. It then goes to
the output E. The dispatcher D contains spe-
cial information, stored there by the rules,

Fig. 1. How a COMIT program works in the
computer.

The way in which COMIT rules are written,
how they direct the computer to perform the
desired operations, and how they are assembled
into programs will now be described. The re-
mainder of the paper is thus a complete manual
of detailed instructions for using this special-
purpose programming language.

COMIT Rules and Their Interpretation
A rule in COMIT has five sections, the name,

the left half, the right half, the routing, and
the go-to, each with its special functions. Fig-
ure 2 shows how a rule is divided into these

Fig. 2. The five sections of a rule in COMIT.
five sections. The name and left half are sepa-
rated by a space, the left half and the right half
are separated by an equal sign, the right half
and the routing are separated by two fraction
bars, and the routing and the go-to are sepa-
rated by a space;

— flow of control —
We will discuss first the function of the name

and the go-to, which have to do with the flow of
control from one rule to another. A program
written in COMIT always starts with the first
rule in sequence. After a rule has been car-
ried out, the computer obtains in the go-to the
name of the next rule to be carried out. The
name of each rule is to be found in the left-
hand part of the name section of that rule. (The

which governs the flow of control or the order
in which the rules of the program are carried
out.

A Programming Language 27

right-hand part of the name section is reserved
for the subrule name, to be discussed later.)

In addition there are three cases when control
is automatically transferred to the next rule in
sequence regardless of its name. One of these
will be immediately clear; the other two will
be clarified in the explanations of the left half
and the routing. The three are: (1) an asterisk
is written in the go-to, (2) the constituents
written in the left half of the rule were not
found in the workspace, (3) an *R in the rout-
ing finds no more material at the input. A rule
to which control is always transferred automat-
ically in this fashion so that a rule name is not
needed, may have an asterisk in the name sec-
tion in place of a rule name. When this auto-
matic transfer of control takes place from the
last rule in sequence so that there is no next
rule, the COMIT program stops.

Figure 3 shows an example of how control
proceeds from one rule to another under the
direction of the rule name and the go-to sec-
tions. In this program, rule A would be the
first one executed, then C, then the rule with
an asterisk in the name section, then B, then
C, then *, then back to B again, and so on
round and round in what is known as a loop,
until one of the conditions occurs in the rule
marked asterisk that will automatically trans-
fer control to the next rule D. After D has
been executed, the program will stop.

Fig. 3. A COMIT program to illustrate the
flow of control under the direction of
the rule name and the go-to sections
of the rules.

As an aid to the memory, we will give a way
in which each part of a rule in COMIT can be
read in English. This will be done by providing
English equivalents for all abbreviations used
in COMIT, and by providing certain convention-
al wordings that will always be used between the
various sections and between the various ab-
breviations. For the parts of the rule already
discussed we need the following conventions: A
rule is preceded by the word "in", rule names
are preceded by the words "the rule", the go-to
is preceded by the words "then go to", an * in

the name section is read "this rule", an * in
the go-to is read "the next rule, " and the rule
is followed by a period to make a sentence.
These conventions are enough to read the pro-
gram in figure 3. These and the other conven-
tions are conveniently tabulated in a later sec-
tion. According to the conventions, the pro-
gram in figure 3 should be read:

In/the rule A/... /then go to/the rule C/.
In/the rule B/... /then go to/the next rule/.
In/the rule C/... /then go to/the next rule/.
In/this rule /... /then go to/the rule B/.
In/the rule D/... /then go to/the next rule/.
The dispatcher also can influence the flow of

control in the following way: A rule in COMIT
may have several subrules. In figure 4, the
rule B has four subrules. The rule name is

Fig. 4. A COMIT program to illustrate a rule
with subrules. The rule B has four
subrules.

in the left hand part of the name section of the
first subrule. The name of each subrule is in
the right hand part of the name section of that
subrule. A rule that does not have several sub-
rules may be thought of as a rule with just one
subrule. A rule with only one subrule does not
have a subrule name. When control is trans-
ferred to a rule with several subrules, the dis-
patcher is consulted for an indication of which
subrule is to be carried out. For this purpose
the dispatcher contains dispatcher entries. A
dispatcher entry of the form B E would cause
the computer to execute the subrule E in rule B
each time it comes to that rule. If there is no
entry in the dispatcher for this particular rule,
or if there is an entry, but it contains more
than one subrule name, the choice is made at
random. In other words, if the dispatcher con-
tains the entry B E G, the computer will choose
at random between the two alternative subrules
E and G. A dispatcher entry having a minus
sign in front of its values (subrule names) has
the same meaning as it would have if it had all
its possible values except those following the
minus sign. A dispatcher entry with a rule

28 V. H. Yngve

name but no values has the same meaning as
one with all possible values, that is, choose
completely at random. The contents of the dis-
patcher are not altered by any of these proces-
ses. How the contents of the dispatcher may
be altered will be discussed in the section on
the routing.

The English reading of a rule with several
subrules is the same as that for a rule with one
subrule except that the words "consult the dis-
patcher and select" are read following the rule
name. In figure 4, the rule B with four sub-
rules is read:
In/the rule B/consult the dispatcher and select/

the subrule D/. . . /then go to/the rule H/.
the subrule E/... /then go to/the rule H/.
the subrule F/... /then go to/the rule I/,
the subrule G/... /then go to/the rule I/.

— workspace —

Having discussed the flow of control, we will
turn to the workspace and describe how text to
be translated or other material to be worked on
is represented there. This will prepare us for
a discussion of the remaining three parts of
the rule whose function it is to operate on the
material in the workspace.

Material is stored in the workspace as a
series of constituents separated by plus signs.
A constituent consists either of a symbol alone
or a symbol and one or more subscripts. The
symbol is written first. It may be the textual
material itself, a word, phrase, or part of a
word; or it may be any temporary word or ab-
breviation that the linguist finds convenient to
use. Subscripts are of two kinds, logical sub-
scripts and numerical subscripts. Logical sub-
scripts are potential dispatcher entries and thus
have the form of a rule name (subscript name)
followed by one or more subrule names (values).
Numerical subscripts are used for numbering
and counting purposes. They consist of a period
for the subscript name followed by an integer
n in the range 0 ≤ n < 215. A constituent may
have any number of logical subscripts, but only
one numerical subscript.

An example of how linguistic material can be
represented in the workspace is given in figure
5. This could be read in English as follows:
"a constituent consisting of/the symbol IN/
with/the numerical subscript/1/ , followed by/
a constituent consisting of/the symbol DER/
with/the numerical subscript/2/ , followed by/
a constituent consisting of/the symbol ADJ/with/
the numerical subscript/3/ , and with/the sub-

script AFF/having/the value EN/ , followed
by/a constituent consisting of/the symbol NOUN/
with/the numerical subscript/4/ , and with/the
subscript GENDER/having/the value FEM/."
The conventional wordings and the readings for
the abbreviations used may be found tabulated
near the end of this article.

Fig. 5. Example of how linguistic material

may be represented in the workspace.

- left half -
Having discussed the name and go-to sections

and shown how material is represented in the
workspace, we are now ready to discuss the re-
maining three sections of a rule. First we will
take up the left half. A rule with several sub-
rules may have no more than one left half. It
is written in the first subrule. The function of
the left half is to indicate to the computer which
constituents in the workspace are to be operated
on by the rest of the rule. The constituents in
the workspace to be operated on are indicated
by writing constituents in the left half that
match them in certain definite respects.

A match condition between a constituent in the
workspace and a constituent written in the left
half will be recognized if the following condi-
tions hold: (1) The symbols are identical. (2)
If the constituent in the left half has any sub-
scripts written on it, the constituent in the work-
space must also have at least subscripts with the
indicated subscript names — the order of writ-
ing the subscripts has no significance. (3) If
the logical subscripts in the left half have any
values indicated, the subscripts in the workspace
must also have at least these values — again the
order is unimportant. (4) If a numerical sub-
script is written in the left half, the numerical
subscript in the workspace must have an identi-
cal numerical value, but if . G or . L is written
in the left half before the value of a numerical
subscript, a numerical subscript in the work-
space will be matched if it has, respectively, a
value greater than or less than the value writ-
ten in the left half.

Dollar signs written in the left half have spe-
cial meanings. $1 may be written in the left
half to match any arbitrary symbol. If the $1
is followed by subscripts, they are matched in
the normal fashion. A dollar sign followed by
any number greater than 1 ($4) will match the

A Programming Language 29

indicated number of constituents. It cannot have
subscripts. A dollar sign without a number
can be written as a constituent in the left half
and can match any number of constituents in the
workspace, including none. This is called an
indefinite dollar sign, while those with numbers
are called definite dollar signs.

Fig. 6. Examples of match and no-match con-

ditions. The top lines in a) and b) re-
present constituents in the workspace.
The bottom lines represent constitu-
ents as written in the left half.

As an example of how constituents written in
the left half can match constituents found in the
workspace, figure 6 a shows several of the pos-
sibilities. Each constituent in the second line
represents a constituent as it might be written
in the left half. It matches the workspace con-
stituent written directly above it in the first line.
In figure 6 b, none of the constituents meet the
match conditions.

The computer carries out a search for a
match condition between each of the constituents
written in the left half and corresponding con-
stituents in the workspace in the following way:
The first constituent on the left in the left half
is compared in turn with each constituent in the
workspace starting from the left until a match
is found. The computer then attempts to match
the next constituent in the left half with the next
constituent in the workspace and so on until
either all constituents written in the left half
have been matched, or one constituent fails to
match. In this case, the computer starts again
with the first constituent in the left half and
searches for another match in the workspace.
Finally, either a match is found for all of the
constituents and the computer goes on to execute
the rest of the rule, or the computer cannot find
the indicated structure in the workspace, in
which case control is automatically transferred
to the next rule. It can be seen that a struc-
ture will be found in the workspace only if it
has matching constituents that are consecutive

and in the same order as those written in the
left half.

If an indefinite dollar sign is the first con-
stituent in the left half, it will match all of the
constituents in the workspace to the left of any
constituent that is matched by the second con-
stituent in the left half. If the indefinite dollar
sign is the last constituent in the left half, it will
match all of the constituents in the workspace
to the right of any constituent that is matched by
the next to the last constituent in the left half.
If there are two or more indefinite dollar signs
written in the same left half, they must be sep-
arated by constituents that are not dollar signs,
or by $1 with subscripts, in order to prevent an
ambiguity as to which constituents in the work-
space are to be found by the several indefinite
dollar signs.

If an indefinite dollar sign has constituents
written on each side of it in the left half, the
computer will first try to match all constituents
to the left of the indefinite dollar sign. It does
not have to search again for the constituents to
the left of the dollar sign unless a number (as
will be explained shortly) referring to a constit-
uent to the left of the indefinite dollar sign is
written to the right of the indefinite dollar sign.
In this case, the computer will search for a new
match for constituents to the left of the indefinite
dollar sign if it fails to find a match with the con-
stituents to the right of the indefinite dollar sign.

Constituents in the left half are conceived of
as being numbered starting with one on the left.
The leftmost constituent is called the number
one constituent in the left half. When the con-
stituents written in the left half have been suc-
cessfully matched with constituents in the work-
space, the constituents in the workspace that
have been found are temporarily numbered by
the computer in the same way as the constitu-
ents in the left half. The constituent in the work-
space found by the number one constituent in the
left half thus becomes the number one constitu-
ent in the workspace. The temporary number-
ing of constituents in the workspace remains un-
til it is altered by the right half or until the rule
has been completely executed. Its purpose is to
allow expressions in the left half, right half and
routing to refer to constituents in the workspace
by their temporary number.

The various steps in a search are indicated
in the example given in figure 7. The lower
two lines give the constituents as they are writ-
ten in the left half of a rule, and the way in

30 V. H. Yngve

Fig. 7. Example of the search steps that the
computer goes through in order to find
in the workspace (top line) the struc-
ture written in the left half of the
rule (next to bottom line).

which the computer numbers these constituents.
The top line indicates the current contents of the
workspace. Lines a) through e) represent the
way in which the computer temporarily numbers
the constituents in the workspace that have been
successfully matched at each step of the search.
The first step is indicated in line a): an at-
tempted match between the number one constit-
uent in the left half and the first constituent on
the left in the workspace fails. In line b), the
number one constituent matches the second con-
stituent in the workspace, but an attempted
match between the number two constituent in
the left half and the third constituent in the work-
space fails. In line c), the number one constit-
uent in the left half matches the third constitu-
ent in the workspace, and the number two the
fourth, but since the number three constituent
is an indefinite dollar sign and can match any
number of constituents including none, the next
constituent, number four is matched with the
fifth in the workspace. The match fails. Hav-
ing already matched the constituents in the left
half to the left of the indefinite dollar sign, the
computer now tries to match the constituents to
the right of the indefinite dollar sign. In line d),
it finds a match of the number four constituent
with the sixth, but the number five constituent
in the left half fails to match the seventh con-
stituent in the workspace. The computer then
tries again with the number four constituent,
and in e) finds a match between the number four
and number five constituents in the left half and
the seventh and eighth constituents in the work-
space. Since all of the constituents in the left
half have now been found in the workspace, the
constituents in the workspace that have been
found are left with the numbers as shown in line
e). The third, fourth, fifth and sixth, seventh,

and eighth constituents in the workspace become
respectively the number one, two, three, four,
and five constituents in the workspace. Note
that two or more constituents in the workspace
may be given one number if they are referred
to by a dollar sign in the left half.

It is possible for the left half to be modified
to some extent by what is found in the work-
space . This can be done by writing a number
as a constituent in the left half. The number
then refers to the constituent already found in
the workspace that has been given that number.
The rest of the left half is then executed as if
the constituent referred to in the workspace had
been written originally in the left half in place
of the number. A number written in the left
half can only refer to a constituent in the work-
space that has already been found by a constitu-
ent to the left of it in the left half. It can refer
only to a single constituent, one matched by $1
for example. A number written in the left half
cannot have subscripts written on it.

Fig. 8. Example of use of a number in the left

half (bottom two lines). Attempted
match indicated at a) fails, but the one
at b) is successful. The contents of
the workspace are represented on the
top line.

Figure 8 gives an example of the use of a
number in the left half. After two unsuccessful
matches, the number one constituent in the left
half finds the third constituent in the workspace.
The number two constituent in the left half is
then considered to be replaced by this constitu-
ent that has just been found (C/S). The match
then fails because the fourth constituent in the
workspace does not have at least the subscript
S, required for a match condition. But when the
number one constituent in the left half finally
finds the sixth constituent in the workspace, the
number two constituent in the left half is con-
sidered to be replaced by this constituent (C),
and the next match is successful because this
C will, according to the conditions for a match,
find the C/S that is next in the workspace.

A Programming Language 31

The English reading of the left half is the
same as the reading of the material in the work-
space except that it starts with ", search for a
match in the workspace for", ends with ",and
if not found, go to the next rule, but if found ",
and includes conventional wordings for several
abbreviations including the dollar signs and the
numbers. For example, A/.G3 + $1 + $ + $2 + 2
in the left half would be read: ", search for a
match in the workspace for /a constituent con-
sisting of /the symbol A/with/the numerical
subscript/greater than/3/, followed by/a con-
stituent consisting of/any symbol/, followed by
/a constituent consisting of/any number of con-
stituents/, followed by/a constituent consisting
of/two constituents/, followed by/a constitu-
ent consisting of/the number two constituent in
the workspace /, and if not found, go to the next
rule, but if found".

- r igh t half -
The function of the right half is to indicate

how the structures found in the workspace by
the left half are to be altered. If there is no
right half, the structures found in the workspace
are left unaltered.

Rearrangement of the constituents found by
the left half and temporarily numbered will take
place when the appropriate numbers are written
in the right half in the desired new order. If
any of the numbers referring to constituents in
the workspace are not written, these constitu-
ents will be deleted. The single digit zero as
the only constituent in the right half will cause
everything found by the left half to be deleted.
The single digit zero is never entered in the
workspace.

New constituents will be inserted in any de-
sired place in the workspace when they are
written complete with symbol and any desired
subscripts and values in the desired place in
the right half.

The computer will add or alter subscripts
when they are written on a constituent or num-
ber in the right half. If this constituent already
has a logical subscript with the same subscript
name as the one that is being added, the two
subscripts are combined in a special way called
dispatcher logic. If there is no overlap in
values, that is, if the two subscripts do not have
any values in common, the old subscript is re-
placed by the new one. But if the two subscripts
have any values in common, only the values that
are common to the two will be retained. An ex-
ample is shown in figure 9.

Fig. 9. Example of the combining of subscripts
by dispatcher logic. a) shows the num-
ber two constituent in the workspace,
b) shows the entry in the right half, c)
shows the resulting number two con-
stituent in the workspace.

A logical subscript written in the right half
with *C in place of its values complements the
values of the subscript found in the workspace,
that is, all the values that it has are replaced
by just those values that it doesn't have. In
other words, *C effectively adds a minus sign
in front of the subscript values. In the case of
numerical subscripts, the new value replaces,
increases, or decreases the old depending on
whether the value written in the right half fol-
lows the period immediately or with an inter-
vening I or D. Since numbers are treated mod-
ulo 215, 1 added to 215 - 1 will give 0, and 1
subtracted from 0 will give 215- l. Subscripts
will be deleted from a constituent when they are
preceded by minus signs in the right half. A
dollar sign preceded by a minus sign will cause
all subscripts on that constituent to be deleted.
Subscripts are added, altered, or deleted in
the order from left to right in which they are
written in the right half. The same subscript
will be altered several times if several expres-
sions involving it are written in the right half.

The computer will carry over subscripts from
any single numbered constituent in the work-
space to any other single numbered constituent
indicated by the right half. For this purpose a
subscript name in the right half is followed by
an asterisk and a number indicating the number
of the constituent from which the subscript is
to be carried over. Carried over subscripts
go onto the new constituent in the order from
left to right in which they are written in the
right half. Logical subscripts go onto the new
constituent with dispatcher logic. Numerical
subscripts carried over either replace, in-
crease, or decrease the old value depending on
whether . or .I. or .D. precedes the asterisk.
A dollar sign preceding the asterisk will cause
all the subscripts from the indicated constitu-
ent to be carried over.

32 V. H. Yngve

After all of the operations indicated by the
right half have been carried out on the constitu-
ents in the workspace, the numbered constit-
uents remaining in the workspace and any new
ones that have been added are given new tempo-
rary numbers by the computer in the order in
which they are represented in the right half.
These new temporary numbers will be of use
when the routing is executed.

Fig. 10. An example of some right-half opera-

tions, a) the numbered constituents
in the workspace initially, b) the right
half, c) the numbered constituents in
the workspace finally, and after re-
numbering.

An example of some of the operations indi-
cated by a right half is given in figure 10.
In this example, the number one constituent in
the workspace is deleted. The number two con-
stituent has its numerical subscript increased
by the numerical subscript carried over from
the number one constituent, and then decreased
by 3 to give 8 (7 + 4 - 3 = 8). The B subscript
is carried over from the number one constitu-
ent, the D subscript, not being mentioned, re-
mains unaltered. The E subscript is added
from the right half. The F subscript has its
values complemented. (We assume that its pos-
sible values are Q, R, S, and T.) The G sub-
script is deleted. Finally, a new constituent is
added to the workspace and the constituents in
the workspace are renumbered.

The English reading of the right half involves
only a few new wordings for abbreviations.
These will be found in the section on English
reading.

— routing —
The function of the routing section of the rule

is to alter the contents of the dispatcher, con-
trol input and output functions, direct the com-
puter to search a list, and add or remove plus
signs in the workspace.

Dispatcher entries may be written in the rout-
ing section. When the routing part of the rule

is executed by the computer, these entries are
sent to the dispatcher where they combine with
the entries there according to dispatcher logic.
Logical subscripts on a constituent in the work-
space may also be sent to the dispatcher as dis-
patcher entries. Conversely, dispatcher en-
tries may be carried over as subscripts onto a
constituent in the workspace. This latter, to
return to the right half for a moment, is done
by using the normal notation for carrying over
subscripts but by using the letter D to refer to
the dispatcher. 1 /CASE*D written in the right
half would cause the CASE dispatcher entry to
be carried over and added to the number one
constituent in the workspace as a subscript.
2/$*D written in the right half would cause all
of the dispatcher entries to be carried over as
subscripts onto the number two constituent in
the workspace. If the constituent in the work-
space already has subscripts of the same kind,
the dispatcher entries are combined with them
according to dispatcher logic.
*D followed by a number in the routing section
will cause all of the subscripts on the indicated
numbered constituent in the workspace to be
sent to the dispatcher as dispatcher entries
where they combine with any entries already
there according to dispatcher logic. When the
computer executes a rule, subscripts designated
in the routing section of the rule and dispatcher
entries written directly in the routing section of
the rule are sent to the dispatcher in the order
in which they are written from left to right in
the routing section. This is done after the left
and the right halves are executed and before the
go-to is executed. When subscripts are sent to
the dispatcher from the workspace, they are
not deleted from the workspace; when they are
sent to the workspace from the dispatcher, they
are not deleted from the the dispatcher.

COMIT has a special provision for rapid dic-
tionary search. Dictionary entries may be writ-
ten in a list which will be automatically alpha-
betized by the computer. This list may be en-
tered from one or more rules called look-up
rules. A look-up rule has two special features:
*L in the routing section of a look-up rule, fol-
lowed by one or more numbers referring to
consecutively numbered constituents in the
workspace, serves to indicate what structure
in the workspace is to be looked up in a list.
The name of a list, written in the go-to section
of the look-up rule, serves to indicate what list
the structure is to be looked up in. A list can-
not be entered by an automatic transfer of con-
trol to the next rule.

A Programming Language 33

When entering a list, the computer tempo-
rarily deletes all subscripts from the constitu-
ents in the workspace indicated by the *L, and
all plus signs between the constituents, thus
forming one long symbol. It is this long sym-
bol that is looked up in the list.

The list itself has the following structure:
The entries are separate rules. The first rule
of a list has a hyphen followed by the name of
the list in its name section. The rest of the
list rules have nothing in their name sections.
List rules have only one subrule each. The long
symbol formed by a look-up rule is looked up in
the left halves of the list rules. Each left half
thus contains only one constituent with a symbol
only and no subscripts. Each list rule may also
have a right half, routing, and go-to. If the long
symbol is found in the list, the corresponding
right half is executed in normal fashion. If the
number one is written in the right half of the
list rule, the long symbol remains in the work-
space. If the single number zero is written in
the right half, the structure indicated by the
look-up rule is deleted. If nothing is written
in the right half of the list rule, the items tem-
porarily deleted by the look-up rule are re-
stored and the workspace remains unaltered. If
the long symbol is not found in the list, the items
temporarily deleted by the look-up rule are re-
stored, leaving the workspace unaltered, and
control is automatically transferred to the first
rule after the list.

Fig. 11. Example of a list rule with look-up rule
and two rules to take care of failure to
find the indicated structure.

An example of a list is given in figure 11.
Rule A is the look-up rule. It serves to find
any number of constituents between spaces in
the workspace. (Spaces are indicated in the
workspace by hyphens.) If the workspace does
not have two spaces, the left half is not found
and control is transferred to the next rule and
then goes to C. If the indicated structure is

found, the symbols of the constituents between
the spaces are formed into one long symbol
which is looked up in list B. If it is not found
in the list, control goes to the rule after the
list and then to G.

In addition to the look-up rule with its *L ab-
breviation, there are two other ways of altering
the number of plus signs in the workspace.
*K followed by one or more numbers referring
to consecutively numbered constituents in the
workspace will cause the symbols of these con-
stituents to be compressed into one long sym-
bol, and any subscripts that they may have had
will be lost.
*E followed by one or more numbers referring
to consecutively numbered constituents in the
workspace will cause the symbols of these con-
stituents to be expanded by the addition of plus
signs so that each character becomes a sep-
arate constituent. A list of characters is given
in the center column of figure 12. Any sub-
scripts that the original constituents may have
had will be lost.

Only one of the abbreviations *L, *K, or *E
may be used in any one rule, and when it is
used, it must be last in the routing section to
avoid confusion in the numbering of the constit-
uents in the workspace.

The COMIT program communicates with the
outside world through input and output functions
under control of abbreviations in the routing
section. Reading of input material and writing
of output material can be done in any one of
several channels and in any one of several for-
mats as follows.

Channels. The particular computer that
COMIT is being programmed for (IBM 704) has
a number of magnetic tape units connected to
it as well as a card reader and punch and a
printer. Magnetic tapes may be prepared for
the computer from information on punched
cards, and material written on tape by the com-
puter may later be read off on a printer or
punched on cards. Each input or output abbre-
viation designates that reading or writing is to
take place in channel A, B, C, or one of the
others. Then, before the program is run on
the computer, the operator connects the chan-
nels used by the programmer to various mag-
netic tape units, printers, etc. Any channel
may be connected to any one of several input
or output devices. This gives the maximum
of flexibility of operation, and allows the out-
put of one COMIT program to become the input
of another no matter what channels are desig-
nated for input and output in the two programs.

34 V. H. Yngve

The abbreviations *RW in the routing section
followed by a channel designation will rewind
the tape unit connected to that channel.

One channel, channel M, is reserved for
monitoring purposes and cannot be rewound.
It can only be written on. The COMIT pro-
grammer can write on this channel any infor-
mation that may be of use to him later concern-
ing the correct or incorrect operation of his
program. Certain information is also written
on this channel automatically if the machine dis-
covers certain mistakes in the program during
operation.

Material may be read or written in any one of
several formats. Format S (specifiers) in-
volves whole constituents, including symbols
and subscripts. Format A is for text, and in-
volves only symbols. Both format S and for-
mat A are designed for the particular charac-
ters available on the printers and card punches
in current use. Other formats may be made
available if and when other types of input or out-
put equipment become available.

When material is punched on cards for read-
ing into the computer in format S, it is punched
in exactly the way that it is to appear in the
workspace, including symbols, subscripts, and
plus signs between constituents. Any number
of characters up to a maximum of 72 may be
punched on a card. When material extends
over onto another card, the break between cards
can be made at any point where a space is al-
lowed, or anywhere in the middle of a symbol.

When the computer executes a rule with an
abbreviation in the routing section that calls
for reading in format S from a designated
channel, the next constituent from the input is
brought into the workspace where it replaces
the designated numbered constituent. For ex-
ample, *RSA2 would cause the computer to
read in format S the next constituent from
channel A and send it to the workspace where
it will replace the number two constituent.

When the computer executes a rule with an
abbreviation in the routing section that calls
for writing in format S, the designated num-
bered constituents in the workspace are writ-
ten in the designated channel. They are not de-
leted from the workspace by this process. For
example, *WSM3 5 would cause the computer
to write in format S in channel M the number
three and the number five constituents from
the workspace.

The computer will start a new line or card
each time it executes an abbreviation calling
for writing in format S. Each line requiring

more than 59 characters will end after the
next space, fraction bar, or comma, or before
the next plus sign, or after 72 characters,
whichever comes first. Lines are thus usually
ended at a natural break.

Format A is for text, and involves only ma-
terial written in the symbol sections of constit-
uents . When material is transmitted between
the workspace and the input or output channels
under the direction of an abbreviation in the
routing calling for format A, a special trans-
literation takes place. The purpose of this
transliteration is to allow all of the characters
available on the input and output devices to be
used in the text. Since many of the available
characters have special meanings in the rule —
the plus sign separates constituents, the frac-
tion bar separates symbol from subscripts, and
so on — these must be represented in a differ-
ent manner when they are written in the symbol
part of a rule if ambiguities are to be eliminated.
Accordingly, format A uses the transliteration
scheme presented in figure 12.

Fig. 12. Format A transliteration table. When

the text characters of column one are
read in by an *RA abbreviation, they
appear in the workspace as in column
two. When the characters of column
two are written out by an *WA abbrev-
iation, they appear in the output as in
column three.

Note that the characters available for use in
symbols consist of the letters, period, comma,

A Programming Language 35

and hyphen, and an asterisk followed by any
character but space.

The first column of figure 12 lists all of the
characters available on the printer and card
punch. The second column shows how these
characters appear in the workspace after they
have been brought in by an input operation cal-
ling for format A. Note that the letters, period
and comma are brought in unchanged, the space
becomes a hyphen in the workspace, and all
other input characters are prefixed by an aster-
isk in the workspace. The end of line symbol *.
is brought in after the last non-space character
on the card.

The second column also lists all possible
characters that can be written unambiguously
in symbols in a rule. Some of the characters
are single and some are double, consisting of
an asterisk followed by another character.
(An *E expand abbreviation written in the
routing does not insert a plus sign between the
asterisk and the other character of a double
character.)

The third column of figure 12 shows how the
characters of the second column will be printed
after a write abbreviation calling for format A
has been executed. The hyphen is written as a
space, *. is interpreted as end of line, or car-
riage return, all other characters are un-
changed except that the asterisk is removed
from the double characters. Since the printer
can print a maximum of 120 characters in a
line, the computer will automatically end a line
after 120 characters have been written if the *.
abbreviation has not ended it sooner.

When the computer executes a rule with an
abbreviation in the routing section that calls
for reading in format A from a designated
channel, the next character is brought in from
the input, transliterated, and entered into the
workspace in place of the designated constitu-
ent. For example, *RAB2 would cause the
computer to read in format A the next charac-
ter from channel B and send it to the workspace
where it will replace the number two constituent.

When the computer executes a rule with an
abbreviation in the routing section that calls
for writing in format A, the symbols from the
designated numbered constituents in the work-
space are assembled into a long symbol, trans-
literated, and written in the designated channel.
For example, *WAM1 2 4 would cause the com-
puter to write in format A in channel M the
symbols from the number one, two, and four
constituents in the workspace. The workspace
remains unchanged in this process.

The input and output abbreviations used in the
routing section of a rule start with an asterisk
followed by R or W for read or write, then
there follows a letter designating format A or
S, then a letter designating a channel, usually
A, B, or C (or M in the case of a write abbre-
viation only) and finally one number in the case
of a read abbreviation and one or more num-
bers in the case of a write abbreviation desig-
nating the numbered constituents in the work-
space that are involved. Examples have been
given in previous paragraphs.

Summary

This notational system is convenient and well
adapted to a large class of problems including
language translation and formal algebraic ma-
nipulation. The computer automatically con-
verts programs in this notation into actual com-
puter programs. Programs are written in the
notation as a series of rules, each of which may
have five parts, the name, the left half, the
right half, the routing, and the go-to.

An arbitrary rule name may be written in the
name section of each rule. In the go-to is writ-
ten the name of the next rule to be executed.

The material to be operated on exists in the
computer as a series of constituents in the
workspace. The function of the left half is to
indicate which constituents are to be operated
on by the computer. This is done by writing
in the left half only enough about the constitu-
ents or their context to uniquely identify them.
In this way, the same rule can be made to apply
in a variety of situations that are the same in
certain respects. There is a convenient way of
locating two or more constituents in the work-
space that match each other in a certain way
without having to know what the way is in which
they match.

If the constituents indicated in the left half
cannot be found in the workspace, control goes
to the next rule instead of to the rule mentioned
in the go-to. This is one type of program
branch.

The function of the right half is to indicate
what operations are to be performed on the
constituents found by the left half. It is possible
to add, delete, and rearrange constituents. It
is also possible to add subscripts to any con-
stituents, and to rearrange, delete, and calcu-
late with them. There are two kinds of sub-
scripts, numerical subscripts that can be used
for counting and simple arithmetic operations,
and logical subscripts that can conveniently be
used for logical calculations. Both types of

36 V. H. Yngve

subscripts may be used in the left half to help
indicate the material to be operated on. They
can thus enter into the condition for a program
branch. Logical subscripts can in addition be
sent to the dispatcher where, as dispatcher
entries, they become effective in controlling
n-way program branches. Each dispatcher en-
try controls which of several subrules is to be
carried out in a given rule.

A third type of program branch is provided
by the facility for looking up material from the
workspace in a list expressed as a series of
list rules. This facility can be used for dic-
tionaries. The computer will automatically al-
phabetize all material in lists to facilitate the
look-up operation.

The function of the routing section is to con-
trol input and output operations, to control flow
of information to and from the dispatcher, to
control list look-up operations, and to bring
several constituents together into one constitu-
ent, or separate a constituent into several con-
stituents, one for each character.

Input and output facilities provide the max-
imum of convenience for the user. In addition,
the system has a number of checks built in that
will help the programmer find any mistakes he
may make in writing his program.

How to Read a Rule in COMIT
The purpose of this section is to present a

summary of the various conventions used for
reading a rule of COMIT in English. The
readings are, of course, purely mnemonic, for
they cannot describe completely what the com-
puter does when it executes the rule.

The various abbreviations used in a rule are
tabulated in figure 13. Some abbreviations
have several different English readings depend-
ing on what part of the rule they are in. When
this is the case, a note has been inserted in
the table to give an indication of the contexts in
which the abbreviation should be given the
various readings.

In addition to the English readings associated
with the abbreviations, there are conventional
wordings that are not associated with any par-
ticular abbreviations, but instead with certain
positions in the various sections and parts of
the rule. In order to summarize these conven-
tional wordings, figure 14 presents a sample
rule and its complete reading. The wordings
that are associated with the format are pro-
vided with an explanatory note giving the cir-
cumstances under which they are used. Fig. 13. Abbreviations used in COMIT and

their English readings.

A Programming Language 37

Fig. 14. Conventional wordings that are associated with the format of a rule. The left hand
column names the various sections and parts of the sample rule with which the word-
ings of the last column are associated.

38 V. H. Yngve

How to Write a Rule in COMIT
The purpose of this section is to present the

conventions that must be adhered to when writ-
ing a COMIT rule.
General: The left hand 72 columns of the
punched card are available for writing COMIT
rules. The other 8 columns can be used for
numbering the cards if so desired. If a rule
requires more than 72 columns to write, a hy-
phen may be used at the end of one card and the
rule continued on the next card in any column.
To indicate a space between the hyphenated
parts of the rule, leave a space before the
hyphen.

Comments enclosed in parentheses are inter-
preted by the computer as spaces. No paren-
theses may be included within a comment. A
comment continued onto the next card should be
hyphenated.
Name section: The first subrule of a rule has
a rule name starting in column one. A rule
that is never referred to by name in a go-to or
in the dispatcher may have an asterisk in col-
umn one instead of a name.

All subrules of a rule with more than one sub-
rule have a subrule name. The subrule name is
separated from the rule name by one or more
spaces, otherwise it starts in any column after
the first. A rule can have a maximum of 36
subrules. If there are several rules with the
same rule name, they must have identical sets
of subrule names.

The first rule of a list has a hyphen in column
one followed by the list name. The rest of the
rules in a list have nothing in the name section.

A name consists of 12 or fewer consecutive
characters. The characters available are the
letters of the alphabet, the numbers, and the
period and hyphen in medial position, that is
not at the beginning or end of the name.
Left half: The first subrule of a rule carries
the left half if there is one. All list rules have
a left half and only one subrule. The left half
is separated from the name by one or more
spaces, otherwise it starts in any column after
the first.

When the left half could be confused with a
subrule name, it should be followed by an equal

Fig. 15. A tabulation of all the types of subscripts allowed in the left and the right halves of rules.

A Programming Language 39

sign to resolve the ambiguity. The possible am-
biguity is between a left half consisting of a sym-
bol with no subscripts in a rule with no subrule
name or right half, and the subrule name of a
first subrule with no left or right half.

The left half consists of one or more con-
stituents separated by plus signs and optional
spaces. A constituent may be a symbol or $1
with or without subscripts, or it may be a def-
inite or indefinite dollar sign without subscripts,
or it may be a number, without subscripts, re-
ferring to a numbered constituent already found
in the workspace.

The left half of a list rule consists of a single
constituent composed of a symbol only.

A symbol is any uninterrupted sequence of
characters. A character in a symbol may be
a letter; period, comma, or hyphen, or an
asterisk followed by any character except space.
These latter double characters are treated as
single characters by the *E abbreviation. The
characters have been summarized in figure 12.

If a constituent has subscripts, these follow
the symbol and are separated from it by a
fraction bar and optional spaces. Subscripts
are separated from each other by commas and
optional spaces.

A logical subscript has a subscript name writ-
ten like a rule name. If it has values, these
have the form of subrule names and are sepa-
rated from it and from each other by one or
more spaces. A logical subscript need not re-
fer to a rule name, but if it does, its Values
are restricted to the subrule names of that
rule.

The types of logical and numerical subscript
expressions available for use in the left half are
tabulated in figure 15 and indicated by an L.
The table also gives an indication of the mean-
ing of the subscripts and how the logical sub-
script values are stored in the computer in
terms of zeros and ones.
Right half: Any rule that has a left half may
have right halves in its subrules. Each right
half is marked by a preceding equal sign and
optional spaces.

The right half consists of one or more con-
stituents separated by plus signs and optional
spaces. A constituent in the right half may be
a symbol with or without subscripts, or it may
be a number, with or without subscripts, refer-
ring to a numbered constituent in the workspace.
The types of logical and numerical subscripts
available for use in the right half are also
listed in figure 15, and indicated by an R.

Routing section: The routing section, if writ-
ten, is preceded by two fraction bars and op-
tional spaces. In the routing section, dispatcher
entries may be written in the same way that sub-
scripts and values are written in the right half.
In addition the input abbreviations *RAA, *RAB,
etc., and *RSA, *RSB, etc. may be written
followed by a number designating one numbered
constituent in the workspace. The output ab-
breviations *WAA, *WAB, etc., and *WSA,
*WSB, etc. may be followed by one or more
numbers referring in any order to numbered
constituents in the workspace. The *L, *K,
and *E may be written followed by one or more
numbers referring to consecutively numbered
constituents in the workspace. The numbers
are separated by one or more spaces. Separate
entries in the routing section are separated
by commas and one or more spaces. Only one
*L, *K, or *E abbreviation may be written in
any rule, and it must be the last thing written
in the routing section.
Go-to: In the go-to is written either the name
of the rule or list that is to be executed next,
or an asterisk signifying that the next rule in
sequence is to be executed next. The go-to is
separated from the rest of the rule by one or
more spaces.

The author wishes to express his appreciation
to S. F. Best, F. C. Helwig, G. H. Matthews,
A. Siegel, and M. R. Weinstein for their many
helpful criticisms and suggestions.

Appendix

Some Sample Programs

We now present a few simple programs writ-
ten in COMIT. These programs have been
chosen for their illustrative and pedagogical
value. In order to see how the computer car-
ries out these programs, the reader may have
to keep track of the contents of the workspace
and dispatcher on a separate piece of paper
while going through the programs.

The first seven examples show how some
simple operations on text can be carried out.
The first one will bring 25 characters of text
into the workspace from the input. The remain-
ing six will insert position markers in various
places between the characters in the workspace
or make various substitutions or order changes.
The position markers must be chosen in such a
way that they will not be confused with other
constituents.

40 V. H. Yngve

The ninth example is a simple word-for-
word translation routine. The text is brought
in a character at a time, and each character is
looked up in a l ist to see if i t is a letter or
mark of punctuation. Each continuous string of
letters between punctuation marks or spaces
is looked up in the dictionary. The punctuation
marks and spaces are carried over into the out-

put text unchanged. Any word that is not found
in the dictionary is printed in its original form
and enclosed in parentheses. Alternative mean-
ings are separated by fraction bars. An output
line is printed as soon as a word is translated
that makes the line exceed 55 characters in
length. A slight additional complication would
be needed to prevent a line from starting with

A Programming Language 41

a space or mark of punctuation, and to allow
for the hyphenation of long words at the end of
the line.

The eighth example illustrates another class
of problems that COMIT is convenient for, that

is, problems of an algebraic or manipulational
nature.

Readers who would like to use the COMIT
system should correspond with the author for
further details.

