
[Information processing: proceedings of the International Conference on Information Processing, Unesco, Paris 1959] 163

The COMIT system for mechanical translation
By V.H. Yngve,
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,
Massachusetts (USA)

The new MIT programming language for mechanical trans-
lation is described and discussed. This language is being made the
basis of an automatic programming system. The programming of
the compiler-interpreter by the MIT Computation Center Staff
is well underway and may be completed by the time of the meeting.
The programming language is quite different from other pro-
gramming languages because of its different purpose. The main
features and advantages of the language are discussed in some
detail together with a discussion of the considerations under-
lying the choice of these particular features, and examples of
their use in programming linguistic problems.
A number of linguists have already been introduced to the pro-
gramming language; a complete programmer's manual is avai-
lable. The language is being used extensively in anticipation of
the completion of the compiler-interpreter. How the language is
working out in actual use is discussed.

1. Introduction

The field of mechanical translation (MT) has advanced to
the point where a number of groups are programming ex-
perimental translating systems on general-purpose com-
puters. Our imperfect understanding of the problem leads
to the inevitable result that these programs are inadequate
in many respects, our steady advance in understanding
leads to our desire to write new experimental translating
routines to replace the old ones while the extreme com-
plexity of human language leads to large complicated pro-
grams that are time-consuming to write. In view of these
considerations, the Mechanical Translation Group at
MIT1) has undertaken to design a programming lan-
guage [2] tailored to the needs of the problem, a programming
language that gives the linguist direct access to the com-
puter without his having to concern himself with details
that are irrelevant to his problem. The language is being
provided with a compiler and interpretive routine written
for the IBM 704 computer by the Programming Research
Staff of the MIT Computation Center.

2. The need

The reason that the mechanical translation programs being
written today are of a trial or tentative nature is that

1) The author is particularly indebted to G. H. Matthews for his
many important contributions and to S. F. Best, F. C. Helwig,
A. Siegel, and M. R. Weinstein of the MIT Computation Center
for their many helpful criticisms and suggestions. Some of the
features of the notation used by N. Chomsky in his theory of
grammar have been incorporated. See [1].

human language and the process of translation are not well
understood. Progress in research requires the tentative
compilation of dictionaries and the tentative compilation
of rules. The rules are not mutually independent but make
up an intricate network of interdependencies, while frequent
tests are necessary to establish the validity or lack of vali-
dity of the compilations. The lack of independence of the
rules makes it unrealistic to insist that a translating pro-
gram have the property that one can add to it by simple
accretion when new facts about translation are discovered.
For this reason, advances in our knowledge will usually
require a complete reprogramming of a translation routine
from the beginning.
We are thus faced with a programming effort of consider-
able magnitude, one in which the economies of an automatic
programming system would be particularly valuable.With-
out such a system, each trial would yield small results for a
large amount of effort. There is a further advantage in a
system in which the linguist can easily do his own pro-
gramming. In the past, linguists and programmers trying
to work together in teams have suffered from a difficulty
more basic than the usual difficulties of communication
between experts in separate fields: Neither the linguist nor
the programmer has been able to be fully effective. The
linguist, not having an intimate knowledge of the capabili-
ties of the machine, was unable to avail himself of its full
power. The programmer, not having an expert knowledge
of linguistic matters, was not easily able to use his special
knowledge of the machine for the solution of linguistic prob-
lems. An automatic programming system which gives the
linguist direct access to his machine by automatically tak-
ing care of the numerous details that are not an essential
part of the problem, should greatly facilitate research in
mechanical translation.

3. Specifications

We are thus led to set up the following requirements for an
automatic programming system. These fall under the three,
headings of utility, convenience, and simplicity.

1) The full utility or general-purpose nature of the com-
puter must be maintained. We do not yet know exactly
what linguistic operations will be necessary for effective
mechanical translation but since the system is to be
used for research purposes, it must be possible to express
any operations that may be needed in the future. The
general-purpose nature of the computer, then, must not
be sacrificed when we design a system that meets the
additional requirements of convenience and simplicity.

2) To meet the requirement of convenience, we must have
a system that the linguist can use himself, a system
adapted to his special purposes. We therefore have to
foresee the kinds of operations that the linguist will want
to carry out most frequently and make them easy to
write. We want to provide special facilities as far as
possible without destroying the general-purpose nature
of the system and without encroaching too much on the
simplicity of the system. The speed of operation of the
final programs and the efficient use of computer storage,
though certainly not to be neglected, are to be given
secondary consideration to the convenience of the pro-
grammer; we desire a user-oriented system rather than
a machine-oriented system. As an example of the sort of
thing that is important, we would like a number of aids
in checking programs, such as built-in automatic checks
on the meaningfulness of the instructions, and a con-
venient method for printing out intermediate results.
We want to relieve the programmer of the burdensome
details of a computer-oriented system. We want him to
be the easy master of the machine, free to exercise his
creative ability.

Yngve • The COMIT system for mechanical translation 185

3) Simplicity is desired so that the system can be easily
learned. Extreme simplicity can be had only at the ex-
pense of convenience because it implies a few elementary
operations rather than many convenient special-purpose
operations. But simplicity of this sort is a false simplicity
from the point of view of the programmer because he has
to learn how to combine the elementary operations in
special ways for his special purposes. A number of care-
fully chosen special-purpose operations can therefore
actually add to the over-all simplicity of the system
from the user's point of view. If we can design a system
that utilizes the prospective programmer's knowledge of
natural languages and his habitual means of expression
in his field of specialization, we can achieve a system that
seems simple and easy to learn in spite of its being con-
venient and therefore complex.

4. The system

In line with the preceding general specifications and a
careful consideration of the particular needs of the lin-
guist in writing translating programs, the following features
are to be found in the COMIT system. The linguist can:

1) handle linguistic units of information without having to
consider a fixed computer word length;

2) store and obtain access to information without having to
compute addresses;

3) manipulate the information without consciously having
to line it up and force it through an arithmetic unit;

4) add, delete, rearrange, and replace linguistic units with-
out consciously having to set aside storage space for
them;

5) add classificatory subscripts to linguistic units and cany
out certain useful operations with these subscripts;

6) incorporate dictionary look-up operations;
7) introduce conditional rules and program branches in a

simple and direct way;
8) write instructions in a natural and flexible format with

a few carefully chosen abbreviations for compactness;
9) call the objects of interest to him by mnemonic names

of his own choosing.

COMIT has two separate methods of addressing—one for
instructions and one for data. This has the advantage that
each method can be designed to be convenient for its pur-
pose. The only possible disadvantage might be an inability
to modify instructions, but COMIT has several built-in
facilities for this.
The method of addressing instructions is similar to the
method used in most programming systems except that
there are no absolute addresses. The programmer uses sym-
bolic addresses exclusively. The method of addressing data
is quite different. Data is not stored by address, but is
stored as a series of items called constituents in what
amounts to one long expansible register called the workspace,
fig. 1, and can be obtained by specifying in the
 …. + …. + …….. + …. + …….. + …

C C C C C C

Fig- 1. Constituents, C, in the workspace

instruction enough about the information or its context
for the computer to be able to find it. The result is that the
programmer never has to compute an address, although
there is a facility that allows him to do so if he wants.
Instructions in COMIT are called rules. Each rule may
specify a number of complicated conditions and operations,
and frequently is a complete loop in itself. The rules are
punched on cards in a free format in which the only card
position that has any special significance is the first column.
The parts of the rule are separated by punctuation in such a

way that each part may take up as many card columns as
necessary. A rule may be hyphenated and allowed to ex-
tend onto as many additional cards as desired. Comments
(in parentheses) may be freely placed within a rule and will
be ignored by the computer.
A rule has five sections, fig. 2: the "name," the "left half,"
the "right half," the "routing," and the "go-to," each with
its special functions. Every rule has a name and a go-to,
and these are always the first and the last sections. The left
half

 ……….. ….. = …. / / …… ……

name left half right half routing go-to

Fig. 2. Format of a rule

and the right half are separated by an equal sign; the right
half and the routing are separated by two fraction bars.
Briefly, the functions of these five sections are as follows:
The name section contains the symbolic address of the rule,
or an asterisk if the rule needs no symbolic address. The
left half effectively addresses those constituents in the
workspace that are to be operated on. It does this by citing
certain of their distinctive characteristics or of their en-
vironment. This causes the computer to search in the
workspace from left to right, scanning over the various
constituents until it comes to the first ones that adequately
meet the description written in the left half. The right half
specifies the operations that are to be carried out. These
may involve addition, deletion, or rearrangement of con-
stituents, or the addition, deletion, or alteration of sub-
scripts on the constituents. The routing section of the rule
controls input and output operations, controls special list
or dictionary look-up operations, allows two or more con-
stituents to be coalesced into one constituent or one con-
stituent to be broken up into a number of constituents, and
controls the facility called the dispatcher, which has the
ability to control program branches on the basis of its
interpretation of subscripts. In the go-to is written the
name or symbolic address of the rule that is to be executed
next, or else an asterisk which signifies that the following
rule in the sequence is to be executed next.

5. Examples

A few examples of how the rules of COMIT can be used to
program various operations will now be given. These ex-
amples have been chosen to illustrate some of the more
important features of COMIT.
Let us assume, to begin with, that some English text has
been brought into the workspace. The text is contained in
the workspace in the form of a number of constituents, one
for each word or punctuation mark. If it is desired to re-
place every occurrence of the words THE MAN IS OLD
by THE OLD MAN, we must delete one word and rear-
range the other three. The following rule will do it:

OLD-MAN THE + MAN + IS + OLD = 1 + 4 + 2
OLD-MAN

In this rule, the rule name or symbolic address has been
chosen arbitrarily to be OLD-MAN. The constituents that
are to be searched for are written in the left half after the
rule name and before the equal sign. Plus signs are used as
marks of punctuation to separate the constituents. The com-
puter searches from the left end of the workspace and
locates the first occurrence of THE MAN IS OLD. In the
right half is written a string of numbers that represent
which of the constituents are to be rewritten in the work-
space and in what order. This rule needs no routing section.
The go-to says that after the rule has been executed, con-
trol should be transferred back to the same rule again.

When the same rule is executed again, the computer will
search again from the left end of the workspace, but this
time it will find the second occurrence of THE MAN IS
OLD because the first occurrence has been changed to
THE OLD MAN, which the computer will skip over in its
search.
The computer will break out of this cycle or loop only
when all of the occurrences of THE MAN IS OLD in the
workspace have been replaced by THE OLD MAN. When
this happens, the search in the workspace initiated by
the left half will be unsuccessful, the right half, routing,
and go-to will not be executed, and control will be trans-
ferred automatically to the next rule. This is the first type
of program branch available in COMIT: automatic transfer
to the next rule if the structure represented in the left half
cannot be found in the workspace.
If it is desired to reverse the process and replace every oc-
currence of THE OLD MAN by THE MAN IS OLD, we
have to rearrange the constituents and add one new one.
New constituents can be added simply by writing them in
the desired place in the right half:

MAN-OLD THE + OLD + MAN = 1 + 3 + IS + 2
MAN-OLD

The free format of the rule and the use of + and = as
punctuation allow optional spaces to be inserted for in-
creased readability. With all optional spaces eliminated, the
preceding rule in its most compact form would read:

MAN-OLD THE + OLD + MAN = l + 3 + IS + 2 MAN-OLD

Rules such as these may frequently be useful, but it is pos-
sible to write more general rules that have a wider range of
applicability. There are two devices for this purpose. The
first device makes use of subscripts; the second makes use
of context. It is possible, for example, if it is linguistically
appropriate, to place a subscript ADJ on all adjectives and
define a noun in terms of its context as the word occurring
between THE and IS.
The following rule will place an ADJ subscript on all oc-
currences of the word OLD:

OLD-SUB OLD = 1/ADJ OLD-SUB

(We assume for the moment that it is possible to recognize
adjectives out of context.) In this rule we note that the
subscript is separated from the rest of the constituent by a
fraction bar. A number of rules of this type could serve to
place the subscript ADJ on all adjectives. These rules
would then be organized into a list or dictionary by a spe-
cial facility that utilizes a rapid dictionary search proce-
dure.
By making use of these ADJ subscripts as well as context,
we can replace our OLD-MAN rule by a more general ad-
jective-noun rule:

ADJ-NOUN THE + $1 + IS + $1/ADJ = 1 + 4 + 2
ADJ-NOUN

In this rule, the symbol $1 stands for any single constituent.
($2 would stand for two adjacent constituents, etc.) We do
not use X for this because it might be confused with a letter
in a word. The rule thus instructs the computer to search
in the workspace for the first sequence of four constituents,
where the first one is THE, the third one is IS, and the last
one has an ADJ subscript on it. (It may have other sub-
scripts too, but they will not interfere with the search at
this point.)
As a further example of the utility of subscripts, suppose
that we want the left half to find a genitive or a dative
German noun phrase. In order to do this, German words in
the workspace are first looked up and replaced by a part-
of-speech symbol and a subscript, G-C, indicating gender

and case. Each subscript G-C has associated with it the
values that the gender-case variable may have for that
word. For instance, DER would be replaced by ART/G-C
M-NOM F-GEN F-DAT P-GEN and MUTTER would be
replaced by NOUN/G-C F-NOM F-GEN F-DAT F-ACC.
Then the left halves of either of the following rules would
find these two constituents in the workspace:

A ART/G-C F-GEN + NOUN/G-C F-GEN = ... OUT

B ART/G-C F-DAT + NOUN/G-C F-DAT = ... OUT

In other words, if subscripts are mentioned in the left half, a
constituent will be found in the workspace if there is an
inclusion relation such that subscripts and values on the
constituent in the workspace include the subscripts and
values asked for in the left half.
Subscripts may be moved from one constituent to another.
Suppose one has a subject and a verb in the workspace.
The subject has a subscript for number, either singular or
plural, and it is desired to move this subscript onto the
verb in order to make it agree in number with the subject.
In the workspace, then, we have either SUBJ/NO SI+
VERB or SUBJ/NO PL + VERB. The following rule will
move the number subscript from SUBJ to VERB no matter
whether it has a singular or a plural value.

AGREE SUBJ + VERB = 1 + 2/NO*l NEXT

That is, in order to carry over a subscript, one mentions the
subscript in the right half, followed by an asterisk and a
number that indicates which constituent has the subscript
to be carried over. The subscript will be carried over with
all of its values.
When subscripts are carried over onto a constituent that
already has a subscript of this kind but with, perhaps, dif-
ferent values, the new values replace the old ones if they
have no values in common. But if they do have values in
common, the constituent is left with just the values that
they have in common. For example, if the workspace had
in it, as before, ART/G-C M-NOM F-GEN F-DAT P-GEN
followed by NOUN/G-C F-NOM F-GEN F-DAT F-ACC,
the following rule would leave both ART and NOUN with
the subscript G-C F-GEN F-DAT; that is, with the values
that the subscripts have in common:

COMBINE ART + NOUN = 1/G-C*2 + 2/G-C*l ON

In addition to the "logical" subscripts that we have been
discussing, COMIT also has numerical subscripts available.
With these subscripts it is possible to perform arithmetic
operations, and to control program branches that depend
on whether a numerical subscript in the workspace has a
value greater than, less than, or equal to a value indicated
in the left half of a rule.
Thus far we have used several characters with special mean-
ings in the rule. The equal sign and two fraction bars
separate sections of the rule, the plus sign separates con-
stituents, the fraction bar is used before subscripts, $1
means a single constituent, the numbers 1, 2, 3, etc. written
in the right half refer to constituents represented in the left
half, parentheses are used to enclose comments that the
computer is to ignore. Sometimes it is desirable to write
these symbols in the workspace. To take an example from
algebra, suppose one wants to replace A (B + C) by
AB + AC. In order to represent the (, +, and) in the left
half and not have the computer confuse them with the
special punctuation use of these characters, they are pre-
ceded in the workspace by an asterisk. This asterisk is
automatically added in input operations and removed in
output operations. The rule would then be written:

EXPAND $1 + *(+ $1 +-*+ + $1 + *) = 1 + 3 + 4 +
1 + 5 EXPAND

 Yngve • The COMIT system for mechanical translation 187
Note that in this rule we have done something that we have
not done before. A one has been indicated twice in the right
half so that the single constituent found by the first $1 in
the left half will be written in two different places in the
workspace.
Another problem arises if we want to replace AB + AC
by A (B + C). In order to be able to write a general rule
for factoring, we want to be able to indicate somehow that
one constituent is repeated twice and therefore should be
factored out without having to specify what the consti-
tuent is. This can be done in COMIT by representing the
first occurrence of the constituent by §l, and then repres-
enting its second occurrence by a number that refers to the
first occurrence in much the same way as the numbers in
the right half refer to constituents. Our rule then becomes:

FACTOR $1 + $1 + *+ + 1 + §1 =
= 1 + *(+ 2 + 3 + 5 + *) FACTOR

The left half of this rule calls for a sequence of five consti-
tuents in which the third constituent is a plus sign and the
fourth is the same as the first.
If we want to replace D SIN(F) by COS(F) D (F),
where F is unrestricted and may be any arbitrary sequence
of constituents, we use the notation $ to stand for this
string. The rule for this is:

DIFF-SIN D + -SIN + *(+$+*} =
= -COS + 3 + 4 + 5 + 1 + 3 + 4 + 5 DIFF-SIN

In this rule, besides the use of § to represent in the left
half any number of constituents, we have used a hyphen
to represent the character 'space' in the workspace.
We shall now explain how the routing section controls
input and output operations. The following rule will bring
in a number of characters, one character at a time.

INPUT $ = 1 + X // *RAA2 INPUT

This rule places an X to the right of the constituents
already in the workspace; the abbreviation *RAA followed
by the number 2 then replaces the second constituent,
namely the X, by the next character at the input. The rule
will continue to bring in characters until there are no more
characters at the input; then there is an automatic transfer
of control to the next rule. It is also possible to bring in
material a constituent at a time instead of a character
at a time.
The output instructions are similar. It is possible to send
to the output any specified constituents, or everything in the
workspace. The following rule will write in the output
everything in the workspace between the markers *A
and *B:

WRITE *A + $ + *B // *WAA2 CONTINUE

COMIT has a provision for address modification called the
dispatcher. With the dispatcher it is possible to control an
n-way program branch in a convenient manner. The
program branch itself is set up in terms of a special
kind of rule that can have a number of subrules. Whenever
this rule is executed, the choice of which subrule is to be
executed is determined by an entry in the dispatcher.
Entries can be placed in the dispatcher by writing them
in the routing section of any convenient rule.
As an example of the use of the dispatcher and a program
branch using a rule with subrules, consider a routine that
brings in a number of characters from the input, and
processes each one. In order to break out of the input loop

we can use the automatic transfer of control to the next
rule that occurs when there is no more material at the
input. If one wants to enter the processing routine once
more after this automatic transfer, a pre-set program
branch can be used as in the following program:
INPUT $ = 1 + X // *RAA2, STOP NO PROCESS
* // STOP YES
PROCESS …
PROCESS
. … .
. … STOP
STOP NO INPUT

YES *
In this program, the dispatcher entries STOP NO or STOP
YES are sent to the dispatcher from the routing section of
either the input rule or the rule to which control is trans-
ferred when there is no more input. Then, each time the
rules starting with PROCESS have been executed, control
goes to the rule STOP. In this rule, control goes back to
INPUT if the dispatcher contains the entry STOP NO.
If the dispatcher contains the entry STOP YES, the
second subrule is executed. This subrule has an asterisk in
the go-to that transfers control to the next rule. Since there
is no next rule, the program stops.
A rule may have as many as 36 subrules; if a larger number
of branches than 36 is needed, several rules with subrules
can be placed in cascade.
It is possible to indicate more than one subrule in a dis-
patcher entry. The dispatcher entry BRANCH A B D
means execute in the rule BRANCH any one of the sub-
rules A, B, or D. The choice is made at random.
When a dispatcher entry is sent to the dispatcher, it com-
bines with the entry that may be there in the same way
that subscripts combine when they are carried over onto
a new constituent: the new one replaces the old one if
there are no values in common, otherwise only the values
in common remain. Subscripts themselves may be written
in the form of dispatcher entries and sent to the dispatcher.
By this mechanism, some rather complicated conditional
transfers can be set up.

6. Conclusions
We have given a brief account of the factors that led up
to the development of COMIT, and some of the character-
istics of this programming language. It is too early to give
an adequate evaluation of how it will work out in practice,
but so far it has been a great help to linguists who have
become familiar with it. Some trial translating programs
have already been written in COMIT in anticipation of the
availability of the compiler and interpretive routine.
It appears that, although the system was developed
specially for application to mechanical translation research,
it may also be useful for other types of program involving
the manipulation of nonnumerical symbols. Some of the
types of program for which COMIT may turn out to be useful
are: formal algebraic manipulations; compilation of pro-
grams from English or other more convenient descriptions;
theorem solving, game playing, and learning programs.
7. References
[1] CHOMSKY, N.: Syntactic structures. ‘s-Gravenhage: Mouton &

Co. 1957.
[2] YNGVE, V. H.: A programming language for mechanical Trans-

lation. Mechanical Translation 5, 1958, pp. 26—41.

