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Abstract
The main goal of the work presented in this paper is to find an inexpensive and automatable way of predicting rankings of MT systems
compatible with human evaluations of these systems expressed in the form of Fluency, Adequacy or Informativeness scores. Our
approach is to establish whether there is a correlation between rankings derived from such scores and the ones that can be built on the
basis of automatically computable attributes of syntactic or semantic nature. We present promising results obtained on the DARPA94
MT evaluation corpus.
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Introduction
The intrinsic quality of a translated text has two major
attributes—its fidelity to the content of the source text
and its naturalness, or fluency, as a text in the target
language. Several studies have demonstrated a
correlation between fluency and fidelity or attributes of
fidelity, such as adequacy and informativeness (Carroll
1966, Nagao et al. 1985). This is a useful finding, since
assessing fluency requires only monolingual evaluators
whereas assessing fidelity requires bilingual
evaluators—an even more costly process. Yet it remains
the case that, for any one text, a large number of fluency
judgments is needed in order to generalize away from
their essentially subjective status.
It is therefore of central concern to explore whether
there are any automatically computable scores that
correlate well with the expensive, manually produced
evaluations. Earlier work on the correlation with a
system’s ability to translate named entities (White et al.
(2000) and our own work during the Geneva ISLE MT
workshop 2001 on the correlation with precision and
recall scores for Information Extraction tasks has shown
the difficulty of this enterprise. Therefore, we attempted
instead to predict, not the scores at the document level
but rather the overall rankings yielded by these scores
for the MT systems themselves.

Manually computed scores
A-, F- and I-scores are respectively the Adequacy,
Fluency and Informativeness scores produced during
the DARPA94 MT evaluation exercise. From 1992
through 1994, DARPA conducted a series of MT
evaluations as part of the Human Language Technology
(HLT) initiative (White, et al, 1994). The largest of
these included 100 newspaper articles in each of three
language pairs (Spanish, French, and Japanese into
English). Each pair was represented by several MT
systems in various states of maturity, and also by two
sets of human, professional translations. Each
translation, in turn, was subjected to three separate
evaluation types:
Adequacy: Subjects assessed the presence of correct
meaning in the MT output—a fidelity measure.

Informativeness: Subjects answered multiple-choice
content questions about each translated text, rather like
a reading comprehension test—another fidelity measure.
Fluency: Subjects rated sentences in translated
documents by the degree to which they were well-
formed English, measuring intelligibility.

Automatically computed scores

C-score
The C-score is taken to measure the grammaticality of
the translations. For any given document, the C-score is
obtained as follows. First, a syntactic bracketing is
produced for all the sentences in the document; this
bracketing results from the analysis of the sentences by
a stochastic context-free parser (the Slp-toolkit,
developed at EPFL-LIA) trained on the Suzanne corpus
(Sampson, 1994). To reduce the impact of Out-of-
Vocabulary words, all surface forms that do not belong
to the lexicon used by the parser are associated, for the
analysis, with all possible open Parts-of-Speech. Since
it often happens that a sentence does not get a full
analysis (i.e. a bracketing spanning the whole sentence),
all partial bracketings are retained. Then, for each
sentence we compute, for every word subsequence W,
the number of maximal bracketings covering W (i.e. the
bracketings that cover the sentence but are not
contained in any other bracketing covering another
subsequence containing W). This enables us to compute
the average bracketing coverage for the sentence (i.e.
the average number of word contained in a maximal
bracketing produced for the sentence). We assume that
this number, which corresponds to the average size of
the syntactic chunks that the parser was able to produce
for the sentence, is intuitively representative of the
grammaticality of the sentence (according to the parser).
To enable the comparison of the average coverage
between sentences of varying length, we normalize the
raw values according to sentence length, to obtain
values between 0 and 1. The C-score associated with a
document is then simply the average of the normalized
average bracketing coverages obtained for the sentences
in the document.



X-score
The X-score is taken to measure the grammaticality of
the translations. For any given document, the X-score is
obtained as follows. First, the document is analyzed by
the Xerox shallow parser XELDA1 in order to produce
the syntactic dependencies for each constituent
sentence. For example, for the sentence The Ministry of
Foreign Affairs echoed this view the following syntactic
dependencies are produced: SUBJ (Ministry, echoed);
DOBJ (echoed, view); NN (Foreign, Affairs) and
NNPREP (Ministry, of, Affairs).
On our corpus, XELDA produces 22 different syntactic
dependencies, among which (the figure within brackets
indicates the dependence occurrence frequency):
RELSUBJ[2501]: for example, RELSUBJ(hearing,
lasted) in “a hearing that lasted more than two hours”;
RELSUBJPASS[108]: for example, RELSUBJPASS(
program, agreed) in “a public program that has already
been agreed on ...”;
PADJ[2358]: for example, PADJ(effects, possible) in
“to examine the effects as possible”;
ADVADJ[433]: for example, ADVADJ(brightly,
colored) in “brightly  colored doors”.
After each document has been parsed, we compute its
dependency profile (i.e. the number of occurrences of
each of the 22 dependencies in the document). This
profile is then used to derive the syntactic X-score using
the following formula2:
X-score = (#RELSUBJ+#RELSUBJPASS-#PADJ-#ADVADJ)

D-score
The D-score is held to measure how well the semantic
content of a document has been preserved during
translation. The underlying idea is to use a vectorial
model for semantics (similar to those used in domains
such as IR) and a large corpus of aligned translations.
We measure whether the position of the source
document in the semantic vector space defined by the
part of the reference corpus in the source language is
comparable to the position of the target document in the
semantic vector space defined by the part of the
reference corpus in the target language.
More precisely, for any document in the source
language, we compute its semantic similarity with each
of the reference document in the source part of the
corpus. The similarity measure used in our experiments
is the cosine similarity between the document lexical
profiles (with the SMART ltn weighting scheme). Note
that the matrix of similarities obtained is an indirect
way of defining the position of the document in the
vector space without requiring knowledge of its co-
ordinates. We proceed in the same way for the
translation of the document in the target language. This
gives a matrix of similarities between the translation
and the translations aligned with the original reference
documents.
The hypothesis is then that the structure of the vector
space built by the original source documents of the

                                                     
1 http://www.xrce.xerox.com/ats/xelda/
2 Several formulae would have been possible for the X-score.
We have selected one such that, if applied on the average
dependency profile, it correctly predicts the average rank
ranking.

reference corpus is preserved by translation in the target
language. Thus, this structure should be very similar to
that of the semantic vector space built by the available
translations of the reference documents in the target
language. If we believe this hypothesis to be true (and
we give some evidence for that below), then the
following property is true:
If the semantic content of a document is well preserved
during translation, then the similarity matrix associated
with the source document in the source vector space
should be very similar to the similarity matrix of the
translation of the document in the target vector space.
The distance between the two matrices (i.e. the square
root of the sum of the squared differences between the
components) then intuitively serves as an indicator of
the quality of the preservation of the semantic content
after translation.
In order to have a measure (hereafter called the D-
score) that varies in the same direction as quality (the
higher the value, the higher the quality), we use a
inverse function of the distance. In our experiments, we
therefore used the following definition for the D-score:

D-score(Dtgt)= 1/(1+d(Msrc(Dsrc),Mtgt(Dtgt)))

Msrc(Dsrc) (or Mtgt(Dtgt)) is the similarity matrix for the
source document Dsrc (or the translation Dtgt) in the
source (or target) semantic vector space.
As reference corpus, we used the JOC corpus
containing 6729 documents comprising questions and
answers to the European Community as published in the
Journal Officiel de la Communauté Européenne.

D-score: validation of the invariance hypothesis
To provide some evidence for this hypothesis (which is
central to a correct interpretation of the D-scores), we
carried out the following experiment. We split the
reference corpus into two parts: a random sample of 500
documents used to test the hypothesis, and the
remaining 6229 documents serving to build the
semantic vector spaces. Then, for each source document
D in the random sample, we computed the distances
d(Msrc(D),Mtgt(Di') for all 500 translations Di' of the 500
source documents. If our invariance hypothesis is true,
then, if Di0’ denotes the translation of the document D,
we should have, for all i≠i0:

d(Msrc(D),Mtgt(Di0') < d(Msrc(D),Mtgt(Di')

Thus, the proportion of the documents in our sample for
which the above property is true is indicative of the
confidence we can have in our invariance hypothesis.
We used a Student test to measure the confidence one
can have in a high proportion of documents verifying
the property, and found that, at a confidence level of
95%, more than 95% of the documents indeed verify it.
This shows our hypothesis to be reliable.

Correlations between the scores
The first part of our work was to analyze the existing
correlations between the various scores (A-, F-, I-, C-,
X- and D-scores). To do so, for each of the 6 systems
for which the scores were available, we computed the
Kandall rank correlation (with the Kendall tau
coefficient) for each pair of scores.
Tables 1 and 2 summarize the values obtained. In each
cell of the tables a result of the form ++(xx%) indicates
that a (positive) correlation at a confidence level



(statistical significance) of at least xx% has been
observed for all the systems. Empty cells indicate non
significant correlations (i.e. correlations that can be
rejected at a confidence level of at least 95%)

Score I F
A ++(50%)3 ++(60%)
F ++(60%)4

Table 1: Rank correlations between A, F and I scores

In contrast to the results given for the A, F and I scores,
for the automatically computed scores C, X and D, no
significant correlation was observed for any of the pairs.
All correlations could be rejected with a confidence
level of at least 95% (except for the pair (C,X) for
systems 1 and 4 -- with ++(60%) for 1 and ++(70%) for
4 -- and for the pair (C,D) for system 4 with ++(50%)).

System A:C A:X A:D
1 ++(20.0%) ++(40.0%) ++(95.0%)
2 ++(60.0%) ++(40.0%)
3 ++(70.0%) ++(95.0%)
4 ++(70.0%)
5 ++(90.0%)
6

F:C F:X F:D
1 ++(30.0%) ++(40.0%)
2 ++(90.0%)
3 ++(50.0%)
4 ++(10.0%)
5 ++(80.0%) ++(70.0%) ++(20.0%)
6 ++(70.0%) ++(80.0%)

I:C I:X I:D
1 ++(60.0%) ++(80.0%) ++(20.0%)
2 ++(95.0%)
3 ++(10.0%)
4
5 ++(60.0%) ++(10.0%)
6 ++(10.0%)

Table 2: Rank correlations between the A, F, I and C,
X, D scores

The correlations between the manually computed scores
and the automatically computed scores are given in
Table 2 and the names of the systems corresponding to
the codes in table 3.

Code System Name
1 Human translation (reference)
2 Candide
3 Globalink
4 Metal System
5 Systran
6 XS

Table 3: Identification of the MT systems

                                                     
3 with the exception of system 1, 2 for which no significative
correlation was observed (++(30%) for 1 and --(5%) for 2).
4 with the exception of system 1 for which no significative
correlation was observed (++(30%)).

The main conclusion that one can derive from the
obtained correlation figures is that there is no pair of
scores for which a significant correlation can be
observed for all the systems. As a consequence, it is not
realistic to think of predicting the A, F, and I scores
individually for each document as we were intending at
the beginning of our experiments. However, it still
possible to evaluate how well the overall ranking of the
systems can be predicted on the basis of the
automatically computed scores. Note that this is in fact
what is expected from a MT evaluation: an overall
ranking of the evaluated systems (the scores on the
individual documents being less important).

The remainder of the paper therefore deals with the
prediction of rankings on the basis of the automatically
computed scores. The above correlation results are used
as a guide for the choice of the predicting scores: to
predict overall rankings based on F, we use the C score;
to predict overall rankings based on A, we use the D
score.

Predicting overall rankings
The very first problem we face when trying to predict
overall rankings is the production of the reference
overall rankings that should be predicted. For the 6
systems evaluated in DARPA94, the raw evaluation
material consists of the A, F, and I scores assigned by
the experts to each translated document.
To decide how an overall ranking can be derived from
the individual scores, we consider each set of scores
assigned to the MT systems for their translation of a
given document as one individual preference indication
(or vote) over these systems. The DARPA94 corpus of
100*6 evaluated translations therefore represents a set
of 100 hundred individual preference indications, and
the overall ranking we are looking for is the one that
optimally globally represents the set of individual
preferences.
This is in fact a very hard mathematical problem well
known to economists and political scientists (in the
domain of voting theory for example) which has been
shown (Arrow, 1963) to have no indisputable optimal
solution.
However, the aggregation techniques that are often used
include:

 ranking by average scores (average score ranking
or ASR);

 ranking by average ranks (average rank ranking or
ARR);

 ranking by average binary preferences (average
preference ranking or APR).

We do not consider here other aggregation techniques,
such as approval voting or multiple round voting
schemes.

ASR has the advantage of great simplicity: for each of
the systems, its scores are averaged over all the
documents and the resulting average values are used to
rank the systems. An important disadvantage of ASR is
its limited robustness: the resulting ranking might be
quite sensitive to outlying values
ARR, which by construction is much less sensitive to
outliers, might therefore be a good alternative. For each



of the documents, the scores of the systems are first
transformed into ranks and the average ranks obtained
by the systems over all the documents are then used to
produce the final ranking.
We mainly use APR as a second step to produce partial
rankings when the total rankings produced as ASR or
ARR appear too unstable.

ASR and ARR rankings
For each of the 6 scores, we obtained the following
ASRs and ARRs:

A score
ASR 1 5 4 3 2 6 ASR&ARR
ARR 1 5 3 4 2 6 1 5(3 4)2 6

F score
ASR 1 5 2 4 3 6 ASR&ARR
ARR 1 5 2 4 3 6 1 5 2 4 3 6

I score
ASR 1 5 3 4 2 6 ASR&ARR
ARR 1 3 5 4 2 6 1(3 5)4 2 6

C score
ASR 2 5 3 4 1 6 ASR&ARR
ARR 2 5 3 4 1 6 2 5 3 4 1 6

X score
ASR 1 5 2 4 3 6 ASR&ARR
ARR 5 1 2 4 3 6 (5 1)2 4 3 6

D score
ASR 5 3 4 1 2 6 ASR&ARR
ARR 5 3 4 1 2 6 5 3 4 1 2 6

where the ASR&ARR cells contain the (possibly
partial) ranking combining ASR and ARR (the systems
appearing within parentheses having no specific rank
relatively to eachother)

Several observations can be made about the resulting
rankings:

 ASR and ARR are identical (or very similar) in all
cases; the few observed differences might be
indicative of unreliable partial rankings (this point
is studied in more detail below);

 system 6 clearly appears as the worst system in all
evaluations;

 system 1 (the human reference) is indeed ranked
first according to the manual scores but is ranked
quite low by the mechanical scores (except maybe
for the X score).

Another interesting point is to define a distance on the
rankings in order to confirm or disconfirm the pairing
predictions (i.e. which mechanical score should be used
to predict which human score) we made earlier on the
basis of the correlation results.
A possible distance on rankings is the Hamming
distance which computes the number of pairwise
differences. The distance definition can be extend to
partial rankings by adding an average value of ½ for all
the pairwise differences that involve a pair for which no
preference decision has been taken.

The distances between the A, F, I and C, X, D rankings
respectively, computed with these conventions, are

given in tables 4 and 5. Table 4 contains the distances
between rankings including the human translations. But
as we have seen, the predictions are quite unreliable for
the reference system (human translation) and it is
therefore more sensible to produce the distance matrix
derive from the rankings with element 1 removed. This
distance matrix is given in Table 5.

C X D
A 7.5 3.0 3.5
F 6.0 0.5 6.0
I 7.5 4.0 3.5

Table 4: Distance matrix including human translations

C X D
A 3.5 2.5 0.5
F 3.5 0.0 0.5
I 3.5 3.5 0.5

Table 5: Distance matrix excluding human translations

Interestingly enough, the pairing predictions made on
the basis of the correlation results are confirmed for the
pairs (A,D) and (I,D), but disconfirmed for the score F
for which the pairing (F,X) is preferred over the
previously predicted pairing (F,C).

Stability of ASR and ARR
As the average rankings analyzed in the previous
section are derived from a limited number of documents
(100), it is of great concern to have some evidence
about the sensitivity of the produced rankings to the
specific documents they have been derived from. One
standard method for testing the stability of results
derived form finite sets of data is bootstrapping. The
general idea of the method is very simple: the original
data set is used to produce a large number of random
samples (called bootstrap replicates) of the same size N
as the original data set. The random samples are used to
produce the result for which we would like to estimate
the stability, which will then be measured by a statistic
computed on the set of bootstrap duplicates.
In our case, the random samples are simply built by N
times randomly selecting among the original N
documents. Notice that it often happens that in the
bootstrap replicates, the same document is duplicated
several times. To measure stability, we simply compute
how many time the evaluated ranking is produced
among all the rankings derived from the bootstrap
replicates. In our experiments, for each of the scores, we
produced 5000 bootstrap replicates of the original
document set and computed the relative frequency in
the resulting set of 5000 rankings of derived from the
original document set. The results, given in Table 7,
invite several observations:

 all the human rankings are substantially more stable
than the mechanical ones;

 ARR rankings are indeed often more stable than
ASR rankings;

 for all the rankings, except the ones derived (ARR)
from the F and A scores, stability is a real concern
as the produced ranking appears in fewer than 50%
of cases among the replicates;



 because of its very low stability, the ranking
derived from the C score seems to be unexploitable
as such.

ASR ARR
A 0.5714 0.6490
F 0.4872 0.7760
I 0.4264 0.4128
C 0.0528 0.0850
X 0.3376 0.2138
D 0.3878 0.4706

Table 7: ASR and ARR ranking stability (5000
bootstrap replications)

As we have already observed when we compared the
ASR and ARR rankings, an important part of the
instability of the produced ranking comes from the fact
that the data they derive from simultaneously
substantiates not one single overall ranking but in fact
several competing ones.
In order to analyze such phenomena, it is important to
be able to produce the different rankings that are
substantiated by a given scored document set. One
possibility would be to explore the different rankings
frequently produced during bootstrapping. This method
however is not optimal as it does not allow us to make
use of the fact that the several competing ranking
probably share important common parts (i.e. subset of
identical pairwise orders).
A better approach is to focus on the average (binary)
preference rankings, as we see in the next section.

Average preference rankings -- APR
Average preference rankings represent another way of
producing an overall ranking as the synthesis of a set of
several individual rankings. The method to produce an
average preference ranking is quite simple. The
individual rankings are first converted in set of binary
comparisons on pairs. For each of the pairs i:j, we then
compute how many times i has been rank higher than j
and the resulting average ranking is the one
corresponding to simple majority decisions for all the
pairs. By convention, for each pair i:j, an associated value 1
(or -1) indicates that element i has a better (or worse) rank
than element j. For partial rankings, a value 0 indicates that
for the pair i:j, no ranking decision have been made.
The APR rankings are in fact far more complicated than
they appear. Indeed, with the procedure described
above, it is not guaranteed that the resulting set of
binary decision effectively corresponds to a ranking.
Two types of problems may arise. First, some of the
average binary decisions cannot be taken on the basis of
a simple majority vote because the number of votes for
each of the 2 possible decisions (1 and -1) are equal; in
such a case, a partial ranking is produced and the
corresponding decision value is set to 0 are already
mentioned earlier.
Second, the resulting set of average binary decisions
does not correspond to a ranking because of the fact that
some transitivity relation is not verified (this is the well
known Condorcet paradox stating that that the
aggregation of rational --i.e. verifying transitivity--
preference sets can result in a irrational set of

preferences (Saari, 1999)). For example the 3 individual
rankings: [1 2 3 4], [2 3 1 4], and [3 1 2 4] result in an
average set of decisions that cannot correspond to a
ranking as it simultaneously requires that [1 2] and [2 3]
(which implies, by transitivity, [1 3]) and [3 1].
One possibility for dealing with such situations is to
relax the binary decisions that violate transitivity to
unknown (value 0), again turning the set of binary
decisions into a partial ranking. For example, if the
above 1:2, 2:3 and 1:3 decisions are relaxed, we obtain
the partial ranking {[1 4], [2 4], [3 4]} which can then
be chosen as average preference ranking.

Application to the MT scores
If we apply the method described above to the scores A,
F, I and C, X, D, we obtain the following average
(possibly relaxed) binary decision sets that are indicated
in table 11 at the end of this document. They correspond
to the following (possibly partial) rankings:

A 1 5 3 4 2 6
F 1 5 2 3 4 6
I 5(1 3 4)2 6
C 2 5(3 4)1 6
X 5 2 1 4 3 6
D 5 3 4(1 2)6

As we did previously for the ASR&ARR rankings, we
can produce the distance matrix between the A, F, I and
C, X, D scores (with and without System 1—see Tables
8 and 9).

C X D
A 7.5 5.0 3.5
F 5.5 2.0 6.5
I 5.5 4.5 2.0

Table 8: Distance matrix including human translations

C X D
A 3.5 3.0 0.0
F 1.5 0.0 3.0
I 3.5 2.5 0.5

Table 9: Distance matrix excluding human translations
Thus, if we sum up the pairing predictions produced by
the different methods seen so far, we obtain Table 10.

C X D
A 0 0 3
F 1 2 0
I 1 0 2

Table 10: Pairing predictions—summary
The A and I scores should therefore be predicted by the
D score, and the F scores by the X score.

Reliability of the APR rankings
As it was the case for the ASR and ARR rankings, the
issue of reliability is an important concern for the APR
rankings. However, the approach for measuring
reliability is quite different. As the APR is build by
deriving the average binary decision from the counts of
the individual binary decisions, a statistical test can



quite easily be used instead of the simple majority rule.
More precisely, this corresponds to replacing the rule:
"select a decision if the proportion of individual
decisions it corresponds to is greater than a half" by the
statistical test "select a decision if the proportion of
individual decisions it corresponds to is significantly
greater than a half". As we are dealing with proportions,
we used a Student test. The level of confidence that can
be associated with a produced APR is then the lower of
the levels of confidence that were used to select the
average binary decisions. Applying this method, we
obtained the following results for the different scores:

A (89%) [1 5(3 4)2 6] [5(3 4)2 6]
F (83%) [1 5 2(3 4)6] [5 2(3 4)6]
I (89%) [5(1 3 4)2 6] [5(3 4)2 6]
C (83%) [2(1 4) 6],[(3 5)6] [2 4 6],[(3 5)6]
X (83%) [5 2 4 3 6],[1 4] [5 2 4 3 6]
D (97%) [(3 5)4(1 2)6] [(3 5)4 2 6]

where the second (resp. third) column contains the
ranking including (resp. excluding) human translations
(system 1) and the percentages indicate the levels of
confidence corresponding to the (possibly partial)
rankings.

Conclusions
We set out to find a way of scoring translated texts
automatically—and therefore relatively cheaply—such
that the scores assigned would correlate with human
evaluations of these texts in terms of their Fluency,
Adequacy or Informativeness—their F-, A- and I-
scores. The automatically computed scores are intended
to reflect the grammaticality of the translations (the C-
and X-scores) and the degree to which they preserve the
semantic content of the original (the D-score). We
discovered, in fact, that there is no pair of manually and
automatically calculated scores for which a significant
correlation can be observed for all five MT systems
considered. However, we did succeed in establishing a
correlation between the (partial) rankings of the MT
systems given by the F-, A- and I-scores and those
given by the C- and X- and D-scores, such that the latter
can reliably predict human rankings of MT system
performance.

When we rank the five systems according to the A-, F-
and I scores, Systran (5) is the best MT system on all
scores; XS (6) is the worst system on all scores;
Globalink (3) and Metal (4) are indistinguishable on all
scores; Candide (2) performs better than Globalink and
Metal on those attributes related to content (Adequacy
and Informativness) but performs worse than Globalink
and Metal for those attributes related to syntax
(Fluency).
When we rank the five systems according to the the C-,
X- and D-scores, we observe that the X score is the best
predictor for the F score; the distance between the APR
ranking produced on the MT systems by the X score
and the “true” APR ranking derived from the F score is
0.5 (corresponding to a similarity of 95%).

Other measures of the quality of the predicted ranking
are its precision and recall (i.e. the proportion of binary

comparisons correctly predicted among all the binary
relations predicted and the proportion of binary
comparisons correctly predicted among all the binary
relations in the true ranking). We have:
Precision(X) = 100%; Recall(X) = 100%.

We recognize that this represents an upper bound, since
the calculation of the X-score was tuned to the
particular corpus. Further work is required on other,
larger corpora to establish whether the current definition
of the X-score is more generally applicable.

The D score is the best predictor for both the A score
and the I score (which produce the same APR ranking);
the distance between the APR ranking produced on the
MT systems by the D score and the “true” APR ranking
derived from the A score or the I score is 1.0
(corresponding to a similarity of 90%). In addition,
Precision(D) = 100.0%; Recall(D) = 88.9%.

The D-score appears to be both reliable and robust, and
we believe that it will yield similar results on other MT
output data.

A final remark concerns the large discrepancy between
the manual and automatic rankings of the human
translations, which raises interesting questions about the
sensitivity of human judges to documents written by
humans. A possible interpretation of the fact that the
human translations are ranked low by the mechanical
scores could be that judges actually recognize human
translations and rank them using more complex criteria,
while for the MT output they apply simpler evaluation
criteria that are then easier to predict on the basis of
simple observable properties.
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