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Abstract

We propose a theory that gives formal seman-
tics to word-level alignments defined over par-
allel corpora. We use our theory to introduce a
linear algorithm that can be used to derive from
word-aligned, parallel corpora the minimal set
of syntactically motivated transformation rules
that explain human translation data.

1 Introduction

In a very interesting study of syntax in statistical machine
translation, Fox (2002) looks at how well proposed trans-
lation models fit actual translation data. One such model
embodies a restricted, linguistically-motivated notion of
word re-ordering. Given an English parse tree, children
at any node may be reordered prior to translation. Nodes
are processed independently. Previous to Fox (2002), it
had been observed that this model would prohibit certain
re-orderings in certain language pairs (such as subject-
VP(verb-object) into verb-subject-object), but Fox car-
ried out the first careful empirical study, showing that
many other common translation patterns fall outside the
scope of the child-reordering model. This is true even
for languages as similar as English and French. For
example, English adverbs tend to move outside the lo-
cal parent/children in environment. The English word
“not” translates to the discontiguous pair “ne ... pas.”
English parsing errors also cause trouble, as a normally
well-behaved re-ordering environment can be disrupted
by wrong phrase attachment. For other language pairs,
the divergence is expected to be greater.

In the face of these problems, we may choose among
several alternatives. The first is to abandon syntax in
statistical machine translation, on the grounds that syn-
tactic models are a poor fit for the data. On this view,
adding syntax yields no improvement over robust phrase-
substitution models, and the only question is how much

does syntax hurt performance. Along this line, (Koehn
et al., 2003) present convincing evidence that restricting
phrasal translation to syntactic constituents yields poor
translation performance – the ability to translate non-
constituent phrases (such as “there are”, “note that”, and
“according to”) turns out to be critical and pervasive.

Another direction is to abandon conventional English
syntax and move to more robust grammars that adapt to
the parallel training corpus. One approach here is that of
Wu (1997), in which word-movement is modeled by rota-
tions at unlabeled, binary-branching nodes. At each sen-
tence pair, the parse adapts to explain the translation pat-
tern. If the same unambiguous English sentence were to
appear twice in the corpus, with different Chinese trans-
lations, then it could have different learned parses.

A third direction is to maintain English syntax and
investigate alternate transformation models. After all,
many conventional translation systems are indeed based
on syntactic transformations far more expressive than
what has been proposed in syntax-based statistical MT.
We take this approach in our paper. Of course, the broad
statistical MT program is aimed at a wider goal than
the conventional rule-based program – it seeks to under-
stand and explain human translation data, and automati-
cally learn from it. For this reason, we think it is impor-
tant to learn from the model/data explainability studies of
Fox (2002) and to extend her results. In addition to being
motivated by rule-based systems, we also see advantages
to English syntax within the statistical framework, such
as marrying syntax-based translation models with syntax-
based language models (Charniak et al., 2003) and other
potential benefits described by Eisner (2003).

Our basic idea is to create transformation rules that
condition on larger fragments of tree structure. It is
certainly possible to build such rules by hand, and we
have done this to formally explain a number of human-
translation examples. But our main interest is in collect-
ing a large set of such rules automatically through corpus



analysis. The search for these rules is driven exactly by
the problems raised by Fox (2002) – cases of crossing
and divergence motivate the algorithms to come up with
better explanations of the data and better rules. Section
2 of this paper describes algorithms for the acquisition
of complex rules for a transformation model. Section 3
gives empirical results on the explanatory power of the
acquired rules versus previous models. Section 4 presents
examples of learned rules and shows the various types of
transformations (lexical and nonlexical, contiguous and
noncontiguous, simple and complex) that the algorithms
are forced (by the data) to invent. Section 5 concludes.
Due to space constraints, all proofs are omitted.

2 Rule Acquisition

Suppose that we have a French sentence, its translation
into English, and a parse tree over the English translation,
as shown in Figure 1. Generally one defines an alignment
as a relation between the words in the French sentence
and the words in the English sentence. Given such an
alignment however, what kinds of rules are we entitled
to learn from this instance? How do we know when it is
valid to extract a particular rule, especially in the pres-
ence of numerous crossings in the alignment? In this sec-
tion, we give principled answers to these questions, by
constructing a theory that gives formal semantics to word
alignments.

2.1 A Theory of Word Alignments

We are going to define a generative process through
which a string from a source alphabet is mapped to a
rooted tree whose nodes are labeled from a target alpha-
bet. Henceforth we will refer to symbols from our source
alphabet as source symbols and symbols from our target
alphabet as target symbols. We define a symbol tree over
an alphabet ∆ as a rooted, directed tree, the nodes of
which are each labeled with a symbol of ∆.

We want to capture the process by which a symbol tree
over the target language is derived from a string of source
symbols. Let us refer to the symbol tree that we want to
derive as the target tree. Any subtree of this tree will be
called a target subtree. Furthermore, we define a deriva-
tion string as an ordered sequence of elements, each of
which is either a source symbol or a target subtree.

Now we are ready to define the derivation process.
Given a derivation string S, a derivation step replaces
a substring S′ of S with a target subtree T that has the
following properties:

1. Any target subtree in S ′ is a subtree of T .

2. Any target subtree in S but not in S ′ does not share
nodes with T .

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

Figure 1: A French sentence aligned with an English
parse tree.
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Figure 2: Three alternative derivations from a source sen-
tence to a target tree.

Moreover, a derivation from a string S of source sym-
bols to the target tree T is a sequence of derivation steps
that produces T from S.

Moving away from the abstract for a moment, let us
revisit the example from Figure 1. Figure 2 shows three
derivations of the target tree from the source string “il
ne va pas”, which are all consistent with our defini-
tions. However, it is apparent that one of these deriva-
tions seems much more “wrong” than the other. Specif-
ically, in the second derivation, “pas” is replaced by the
English word “he,” which makes no sense. Given the vast
space of possible derivations (according to the definition
above), how do we distinguish between good ones and
bad ones? Here is where the notion of an alignment be-
comes useful.

Let S be a string of source symbols and let T be a target
tree. First observe the following facts about derivations
from S to T (these follow directly from the definitions):

1. Each element of S is replaced at exactly one step of
the derivation.
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Figure 3: The alignments induced by the derivations in
Figure 2

2. Each node of T is created at exactly one step of the
derivation.

Thus for each element s of S, we can define
replaced(s, D) to be the step of the derivation D during
which s is replaced. For instance, in the leftmost deriva-
tion of Figure 2, “va” is replaced by the second step of the
derivation, thus replaced(va, D) = 2. Similarly, for each
node t of T , we can define created(t, D) to be the step
of derivation D during which t is created. For instance,
in the same derivation, the nodes labeled by “AUX” and
“VP” are created during the third step of the derivation,
thus created(AUX, D) = 3 and created(VP, D) = 3.

Given a string S of source symbols and a target tree
T , an alignment A with respect to S and T is a relation
between the leaves of T and the elements of S. Choose
some derivation D from S to T . The alignment A in-
duced by D is created as follows: an element s of S is
aligned with a leaf node t of T iff replaced(s, D) =
created(t, D). In other words, a source word is aligned
with a target word if the target word is created during the
same step in which the source word is replaced. Figure 3
shows the alignments induced by the derivations of Fig-
ure 2.

Now, say that we have a source string, a target tree,
and an alignment A. A key observation is that the set
of “good” derivations according to A is precisely the set
of derivations that induce alignments A′ such that A is
a subalignment of A′. By subalignment, we mean that
A ⊆ A′ (recall that alignments are simple mathematical
relations). In other words, A is a subalignment of A′ if A
aligns two elements only if A′ also aligns them.

We can see this intuitively by examining Figures 2 and
3. Notice that the two derivations that seem “right” (the
first and the third) are superalignments of the alignment
given in Figure 1, while the derivation that is clearly
wrong is not. Hence we now have a formal definition
of the derivations that we are interested in. We say that
a derivation is admitted by an alignment A if it induces a
superalignment of A. The set of derivations from source
string S to target tree T that are admitted by alignment A

can be denoted δA(S, T ). Given this, we are ready to ob-
tain a formal characterization of the set of rules that can

ne pas

he

PRP

NP
VB

go

NP VP

PRP RBAUX VB

he notdoes go

Derivation step: Induced rule:

input: ne VB  pas

output:
VP

RBAUX x2

notdoes

S

NP VP

PRP RBAUX VB

he notdoes go

input: NP  VP

output: S

x1 x2

Figure 4: Two derivation steps and the rules that are in-
duced from them.

be inferred from the source string, target tree, and align-
ment.

2.2 From Derivations to Rules

In essence, a derivation step can be viewed as the applica-
tion of a rule. Thus, compiling the set of derivation steps
used in any derivation of δA(S, T ) gives us, in a mean-
ingful sense, all relevant rules that can be extracted from
the triple (S, T, A). In this section, we show in concrete
terms how to convert a derivation step into a usable rule.

Consider the second-last derivation step of the first
derivation in Figure 2. In it, we begin with a source sym-
bol “ne”, followed by a target subtree rooted at V B, fol-
lowed by another source symbol “pas.” These three ele-
ments of the derivation string are replaced with a target
subtree rooted at V P that discards the source symbols
and contains the target subtree rooted at V B. In general,
this replacement process can be captured by the rule de-
picted in Figure 4. The input to the rule are the roots
of the elements of the derivation string that are replaced
(where we define the root of a symbol to be simply the
symbol itself), whereas the output of the rule is a symbol
tree, except that some of the leaves are labeled with vari-
ables instead of symbols from the target alphabet. These
variables correspond to elements of the input to the rule.
For instance, the leaf labeled x2 means that when this rule
is applied, x2 is replaced by the target subtree rooted at
V B (since V B is the second element of the input). Ob-
serve that the second rule induced in Figure 4 is simply
a CFG rule expressed in the opposite direction, thus this
rule format can (and should) be viewed as a strict gener-
alization of CFG rules.
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Figure 5: An alignment graph. The nodes are annotated
with their spans. Nodes in the frontier set are boldfaced
and italicized.

Every derivation step can be mapped to a rule in this
way. Hence given a source string S, a target tree T , and
an alignment A, we can define the set ρA(S, T ) as the set
of rules in any derivation D ∈ δA(S, T ). We can regard
this as the set of rules that we are entitled to infer from
the triple (S, T, A).

2.3 Inferring Complex Rules

Now we have a precise problem statement: learn the set
ρA(S, T ). It is not immediately clear how such a set can
be learned from the triple (S, T, A). Fortunately, we can
infer these rules directly from a structure called an align-
ment graph. In fact, we have already seen numerous ex-
amples of alignment graphs. Graphically, we have been
depicting the triple (S, T, A) as a rooted, directed, acyclic
graph (where direction is top-down in the diagrams). We
refer to such a graph as an alignment graph. Formally,
the alignment graph corresponding to S, T , and A is just
T , augmented with a node for each element of S, and
edges from leaf node t ∈ T to element s ∈ S iff A aligns
s with t. Although there is a difference between a node
of the alignment graph and its label, we will not make a
distinction, to ease the notational burden.

To make the presentation easier to follow, we assume
throughout this section that the alignment graph is con-
nected, i.e. there are no unaligned elements. All of the
results that follow have generalizations to deal with un-
aligned elements, but unaligned elements incur certain
procedural complications that would cloud the exposi-
tion.

It turns out that it is possible to systematically con-
vert certain fragments of the alignment graph into rules
of ρA(S, T ). We define a fragment of a directed, acyclic
graph G to be a nontrivial (i.e. not just a single node) sub-
graph G′ of G such that if a node n is in G′ then either n

is a sink node of G′ (i.e. it has no children) or all of its
children are in G′ (and it is connected to all of them). In

VP

RBAUX VB

notdoes

ne pas

S

NP VP

input: ne VB  pas

output:
VP

RBAUX x2

notdoes

input: NP  VP

output: S

x1 x2

{ ne } { pas }

{ va }

{ ne, va, pas }

{ il } { ne, va, pas }

{ il, ne, va, pas }

Figure 6: Two frontier graph fragments and the rules in-
duced from them. Observe that the spans of the sink
nodes form a partition of the span of the root.

Figure 6, we show two examples of graph fragments of
the alignment graph of Figure 5.

The span of a node n of the alignment graph is the
subset of nodes from S that are reachable from n. Note
that this definition is similar to, but not quite the same
as, the definition of a span given by Fox (2002). We
say that a span is contiguous if it contains all elements
of a contiguous substring of S. The closure of span(n)
is the shortest contiguous span which is a superset of
span(n). For instance, the closure of {s2, s3, s5, s7}
would be {s2, s3, s4, s5, s6, s7} The alignment graph in
Figure 5 is annotated with the span of each node.

Take a look at the graph fragments in Figure 6. These
fragments are special: they are examples of frontier
graph fragments. We first define the frontier set of an
alignment graph to be the set of nodes n that satisfy the
following property: for every node n′ of the alignment
graph that is connected to n but is neither an ancestor nor
a descendant of n, span(n′) ∩ closure(span(n)) = ∅.

We then define a frontier graph fragment of an align-
ment graph to be a graph fragment such that the root and
all sinks are in the frontier set. Frontier graph fragments
have the property that the spans of the sinks of the frag-
ment are each contiguous and form a partition of the span
of the root, which is also contiguous. This allows the fol-
lowing transformation process:

1. Place the sinks in the order defined by the partition
(i.e. the sink whose span is the first part of the span
of the root goes first, the sink whose span is the sec-
ond part of the span of the root goes second, etc.).
This forms the input of the rule.

2. Replace sink nodes of the fragment with a variable
corresponding to their position in the input, then
take the tree part of the fragment (i.e. project the
fragment on T ). This forms the output of the rule.



Figure 6 shows the rules derived from the given graph
fragments. We have the following result.

Theorem 1 Rules constructed according to the above
procedure are in ρA(S, T ).

Rule extraction: Algorithm 1. Thus we now have a
simple method for extracting rules of ρA(S, T ) from the
alignment graph: search the space of graph fragments for
frontier graph fragments.

Unfortunately, the search space of all fragments of a
graph is exponential in the size of the graph, thus this
procedure can also take a long time to execute. To ar-
rive at a much faster procedure, we take advantage of the
following provable facts:

1. The frontier set of an alignment graph can be identi-
fied in time linear in the size of the graph.

2. For each node n of the frontier set, there is a unique
minimal frontier graph fragment rooted at n (ob-
serve that for any node n′ not in the frontier set,
there is no frontier graph fragment rooted at n′, by
definition).

By minimal, we mean that the frontier graph fragment
is a subgraph of every other frontier graph fragment with
the same root. Clearly, for an alignment graph with k

nodes, there are at most k minimal frontier graph frag-
ments. In Figure 7, we show the seven minimal frontier
graph fragments of the alignment graph of Figure 5. Fur-
thermore, all other frontier graph fragments can be cre-
ated by composing 2 or more minimal graph fragments,
as shown in Figure 8. Thus, the entire set of frontier graph
fragments (and all rules derivable from these fragments)
can be computed systematically as follows: compute the
set of minimal frontier graph fragments, compute the set
of graph fragments resulting from composing 2 minimal
frontier graph fragments, compute the set of graph frag-
ments resulting from composing 3 minimal graph frag-
ments, etc. In this way, the rules derived from the min-
imal frontier graph fragments can be regarded as a ba-
sis for all other rules derivable from frontier graph frag-
ments. Furthermore, we conjecture that the set of rules
derivable from frontier graph fragments is in fact equiva-
lent to ρA(S, T ).

Thus we have boiled down the problem of extracting
complex rules to the following simple problem: find the
set of minimal frontier graph fragments of a given align-
ment graph.

The algorithm is a two-step process, as shown below.

Rule extraction: Algorithm 2

1. Compute the frontier set of the alignment graph.

2. For each node of the frontier set, compute the mini-
mal frontier graph fragment rooted at that node.

VP

RBAUX VB

notdoes

ne pas

S

NP VP

NP

PRP

PRP

he

VB

go

go

va
he

il

Figure 7: The seven minimal frontier graph fragments of
the alignment graph in Figure 5
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Figure 8: Example compositions of minimal frontier
graph fragments into larger frontier graph fragments.

Step 1 can be computed in a single traversal of the
alignment graph. This traversal annotates each node with
its span and its complement span. The complement span
is computed as the union of the complement span of its
parent and the span of all its siblings (siblings are nodes
that share the same parent). A node n is in the frontier
set iff complement span(n) ∩ closure(span(n)) = ∅.
Notice that the complement span merely summarizes the
spans of all nodes that are neither ancestors nor descen-
dents of n. Since this step requires only a single graph
traversal, it runs in linear time.

Step 2 can also be computed straightforwardly. For
each node n of the frontier set, do the following: expand
n, then as long as there is some sink node n′ of the result-
ing graph fragment that is not in the frontier set, expand
n′. Note that after computing the minimal graph frag-
ment rooted at each node of the frontier set, every node
of the alignment graph has been expanded at most once.
Thus this step also runs in linear time.

For clarity of exposition and lack of space, a couple of
issues have been glossed over. Briefly:

• As previously stated, we have ignored here the is-
sue of unaligned elements, but the procedures can
be easily generalized to accommodate these. The



results of the next two sections are all based on im-
plementations that handle unaligned elements.

• This theory can be generalized quite cleanly to in-
clude derivations for which substrings are replaced
by sets of trees, rather than one single tree. This
corresponds to allowing rules that do not require the
output to be a single, rooted tree. Such a general-
ization gives some nice power to effectively explain
certain linguistic phenomena. For instance, it allows
us to immediately translate “va” as “does go” in-
stead of delaying the creation of the auxiliary word
“does” until later in the derivation.

3 Experiments

3.1 Language Choice

We evaluated the coverage of our model of transforma-
tion rules with two language pairs: English-French and
English-Chinese. These two pairs clearly contrast by
the underlying difficulty to understand and model syntac-
tic transformations among pairs: while there is arguably
a fair level of cohesion between English and French,
English and Chinese are syntactically more distant lan-
guages. We also chose French to compare our study with
that of Fox (2002). The additional language pair provides
a good means of evaluating how our transformation rule
extraction method scales to more problematic language
pairs for which child-reordering models are shown not to
explain the data well.

3.2 Data

We performed experiments with two corpora, the FBIS
English-Chinese Parallel Text and the Hansard French-
English corpus.We parsed the English sentences with
a state-of-the-art statistical parser (Collins, 1999). For
the FBIS corpus (representing eight million English
words), we automatically generated word-alignments us-
ing GIZA++ (Och and Ney, 2003), which we trained on
a much larger data set (150 million words). Cases other
than one-to-one sentence mappings were eliminated. For
the Hansard corpus, we took the human annotation of
word alignment described in (Och and Ney, 2000). The
corpus contains two kinds of alignments: S (sure) for
unambiguous cases and P (possible) for unclear cases,
e.g. idiomatic expressions and missing function words
(S ⊆ P ). In order to be able to make legitimate com-
parisons between the two language pairs, we also used
GIZA++ to obtain machine-generated word alignments
for Hansard: we trained it with the 500 sentences and
additional data representing 13.7 million English words
(taken from the Hansard and European parliament cor-
pora).

3.3 Results

From a theoretical point of view, we have shown that our
model can fully explain the transformation of any parse
tree of the source language into a string of the target lan-
guage. The purpose of this section is twofold: to pro-
vide quantitative results confirming the full coverage of
our model and to analyze some properties of the trans-
formation rules that support these derivations (linguistic
analyses of these rules are presented in the next section).

Figure 9 summarizes the coverage of our model with
respect to the Hansard and FBIS corpora. For the for-
mer, we present results for the three alignments: S align-
ments, P alignments, and the alignments computed by
GIZA++. Each plotted value represents a percentage of
parse trees in a corpus that can be transformed into a tar-
get sentence using transformation rules. The x-axis rep-
resents different restrictions on the size of these rules: if
we use a model that restrict rules to a single expansion
of a non-terminal into a sequence of symbols, we are in
the scope of the child-reordering model of (Yamada and
Knight, 2001; Fox, 2002). We see that its explanatory
power is quite poor, with only 19.4%, 14.3%, 16.5%, and
12.1% (for the respective corpora). Allowing more ex-
pansions logically expands the coverage of the model,
until the point where it is total: transformation rules no
larger than 17, 18, 23, and 43 (in number of rule expan-
sions) respectively provide enough coverage to explain
the data at 100% for each of the four cases.

It appears from the plot that the quality of alignments
plays an important role. If we compare the three kinds of
alignments available for the Hansard corpus, we see that
much more complex transformation rules are extracted
from noisy GIZA++ alignments. It also appears that the
language difference produces quite contrasting results.
Rules acquired for the English-Chinese pair have, on av-
erage, many more nodes. Note that the language differ-
ence in terms of syntax might be wider than what the plot
seems to indicate, since word alignments computed for
the Hansard corpus are likely to be more errorful than the
ones for FBIS because the training data used to induce the
latter is more than ten times larger than for the former.

In Figure 10, we show the explanatory power of our
model at the node level. At each node of the frontier
set, we determine whether it is possible to extract a rule
that doesn’t exceed a given limit k on its size. The plot-
ted values represent the percentage of frontier set inter-
nal nodes that satisfy this condition. These results appear
more promising for the child-reordering model, with cov-
erage ranging from 72.3% to 85.1% of the nodes, but we
should keep in mind that many of these nodes are low in
the tree (e.g. base NPs); extraction of 1-level transfor-
mation rules generally present no difficulties when child
nodes are pre-terminals, since any crossings can be re-
solved by lexicalizing the elements involved in it. How-
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ever, higher level syntactic constituents are more prob-
lematic for child-reordering models, and the main rea-
sons they fail to provide explanation of the parses at the
sentence level.

Table 1 shows that the extraction of rules can be per-
formed quite efficiently. Our first algorithm, which has an
exponential running time, cannot scale to process large
corpora and extract a sufficient number of rules that a
syntax-based statistical MT system would require. The
second algorithm, which runs in linear time, is on the
other hand barely affected by the size of rules it extracts.

k=1 3 5 7 10 20 50
I 4.1 10.2 57.9 304.2 - - -
II 4.3 5.4 5.9 6.4 7.33 9.6 11.8

Table 1: Running time in seconds of the two algorithms
on 1000 sentences. k represent the maximum size of rules
to extract.
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VBZ
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DT NNS

the people what is themgood for

WP VBZ JJ IN PRP

NPB
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SG-A

SBAR-A

VHPN
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S

le gouvernement dit tout simplement à les gens ce qui est bon pour eux

input:

VBZ ADVP àNPB SBAR -S

output: S

VPx2

x1 x3 x4

Figure 11: Adverb-verb reordering.

4 Discussions

In this section, we present some syntactic transformation
rules that our system learns. Fox (2002) identified three
major causes of crossings between English and French:
the “ne ... pas” construct, modals and adverbs, which a
child-reordering model doesn’t account for. In section 2,
we have already explained how we learn syntactic rules
involving “ne ... pas”. Here we describe the other two
problematic cases.

Figure 11 presents a frequent cause of crossings be-
tween English and French: adverbs in French often ap-
pear after the verb, which is less common in English.
Parsers generally create nested verb phrases when ad-
verbs are present, thus no child reordering can allow a
verb and an adverb to be permuted. Multi-level reodering
as the rule in the figure can prevent crossings. Fox’s solu-
tion to the problem of crossings is to flatten verb phrases.
This is a solution for this sentence pair, since this ac-
counts for adverb-verb reorderings, but flattening the tree
structure is not a general solution. Indeed, it can only ap-
ply to a very limited number of syntactic categories, for
which the advantage of having a deep syntactic structure
is lost.

Figure 12 (dotted lines are P alignments) shows an in-
teresting example where flattening the tree structure can-
not resolve all crossings in node-reordering models. In
these models, a crossing remains between MD and AUX
no matter how VPs are flattened. Our transformation rule
model creates a lexicalized rule as shown in the figure,
where the transformation of “will be” into “sera” is the
only way to resolve the crossing.

In the Chinese-English domain, the rules extracted by
our algorithm often have the attractive quality that they
are the kind of common-sense constructions that are used
in Chinese language textbooks to teach students. For in-
stance, there are several that illustrate the complex re-
orderings that occur around the Chinese marker word
“de.”



NPB

DT JJ NN

the full report will

MD AUX VB

be coming in before the fall

RB IN DT NN

NPB

PP

VP-A

ADVP

VP

S

le rapport complet sera déposé de ici le automne prochain

input: sera  VP-A
output:

VP

VP-Awill/MD

be/AUX

VP-A

x2

Figure 12: Crossing due to a modal.

5 Conclusion

The fundamental assumption underlying much recent
work in statistical machine translation (Yamada and
Knight, 2001; Eisner, 2003; Gildea, 2003) is that lo-
cal transformations (primarily child-node re-orderings)
of one-level parent-children substructures are an adequate
model for parallel corpora. Our empirical results suggest
that this may be too strong of an assumption. To explain
the data in two parallel corpora, one English-French, and
one English-Chinese, we are often forced to learn rules
involving much larger tree fragments. The theory, algo-
rithms, and transformation rules we learn automatically
from data have several interesting aspects.

1. Our rules provide a good, realistic indicator of the
complexities inherent in translation. We believe that
these rules can inspire subsequent developments of
generative statistical models that are better at ex-
plaining parallel data than current ones.

2. Our rules put at the fingertips of linguists a very
rich source of information. They encode translation
transformations that are both syntactically and lex-
ically motivated (some of our rules are purely syn-
tactic; others are lexically grounded). A simple sort
on the counts of our rules makes explicit the trans-
formations that occur most often. A comparison of
the number of rules extracted from parallel corpora
specific to multiple language pairs provide a quanti-
tative estimator of the syntactic “closeness” between
various language pairs.

3. The theory we proposed in this paper is independent
of the method that one uses to compute the word-
level alignments in a parallel corpus.

4. The theory and rule-extraction algorithm are also
well-suited to deal with the errors introduced by
the word-level alignment and parsing programs one
uses. Our theory makes no a priori assumptions

about the transformations that one is permitted to
learn. If a parser, for example, makes a systematic
error, we expect to learn a rule that can neverthe-
less be systematically used to produce correct trans-
lations.

In this paper, we focused on providing a well-founded
mathematical theory and efficient, linear algorithms
for learning syntactically motivated transformation rules
from parallel corpora. One can easily imagine a range
of techniques for defining probability distributions over
the rules that we learn. We suspect that such probabilis-
tic rules could be also used in conjunction with statistical
decoders, to increase the accuracy of statistical machine
translation systems.
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